
 Journal of Basic & Applied Sciences, 2013, 9, 69-81 69 

 
 ISSN: 1814-8085 / E-ISSN: 1927-5129/13  © 2013 Lifescience Global 

Fundamental Problems of Internal Gravity Waves Dynamics in 
Ocean 

Vitaly V. Bulatov* and Yury V. Vladimirov 

Institute for Problems in Mechanics RAS, Pr. Vernadskogo 101 - 1, Moscow 119526, Russia 

Abstract: In paper fundamental problems of internal gravity waves dynamics are considered. The solution of this 
problem is expressed in terms of the Green’s function and the asymptotic representations of the solutions are 

considered. The uniform asymptotic forms of the internal gravity waves in horizontally inhomogeneous and non-
stationary stratified ocean are obtained. A modified spatio-temporal ray method is proposed, which belongs to the class 
of geometrical optics methods (WKBJ method). Analytical and numerical algorithms of internal gravity wave calculations 

for the real ocean parameters are presented.  
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INTRODUCTION 

Internal gravity waves are an important feature of 

ocean dynamics and the may be found almost 

everywhere in the ocean. Internal gravity waves are 

supported in a stably stratified medium. Vertical motion 

is then suppressed by gravitational forces. A vertical 

displacement of a fluid parcel will result in a buoyancy 

force opposite in direction to the displacement and as a 

result the fluid parcel will undergo vertical oscillations 

with a frequency which is determined by the density 

stratification of the medium. The essential 

characteristic of internal gravity waves is that they can 

propagate over large distance practically without 

dissipation losses and with almost unchanged 

structure. There are many works devoted to theoretical, 

numerical and experimental investigations of the 

internal gravity waves fields, but our aim is not to 

discuss this results. The reader is referred to, among 

others, the papers [1-19]. 

There are several types of energy source for 

internal gravity waves. One possibility is generation 

through atmospheric winds. Another is tidal flow over 

bottom topography. To generate an internal wave field 

with an organized structure it is necessary to have a 

coherent localized source. One example of this is a 

moving vessel. Both surface and underwater vessels 

generated internal gravity waves which have a well 

organizes structure. Just as for surface ship waves, the 

internal wave field has a V-shaped structure, but in 

contradistinction to ship waves here the opening angle 

oh the V depends on the stratification and the speed of 

the vessel. A self-propelled moving underwater object  
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will create a turbulent wake. The wake will form behind 

the body and it will expand in time, both horizontally 

and vertically. Further this wake collapses at a certain 

distance downstream of the moving object and 

produces a significant internal wave field. The 

numerical modeling of such wake collapse is difficult, 

and requires a large amount of computer capacity. 

Such a model is outside the scope of our investigation 

[14, 15].  

For an arbitrary ocean density distribution it is 
possible to solve the internal wave generation and 
propagation problems numerically. The shortcoming of 
this approach is the boundness of the space region in 
which the problem can be solved. For example, 
numerical Fourier method is used usually. In 
accordance with this method it is necessary to sum 

over about 610  Fourier components. Moreover, the 

numerical method do not readily lead to a qualitative 
description of internal waves in real ocean. In this 
paper we will examine the linear internal gravity waves 
generated by u source in stratified medium. This 
problem is solved by using Green’s function method. 
The solution thus obtained is a sum of triple 
quadratures which expressed in terms of 
eigenfunctions and eigenvalues of corresponding 
vertical spectral problems. This method makes it 
possible to obtain the simple asymptotic forms of 
solution and easy-to-interpret qualitative description of 
field structure [6, 9, 11, 12].  

The internal gravity waves are the oscillations of a 
stratified medium in the gravity force field. The stratified 
medium is such a medium where the density increases 
with the depth. Suppose that a volume element of the 
medium is not at the equilibrium, for example it could 
be displaced upward, then it will be heavier than the 
surrounding medium and therefore Archimedean forces 
will make it move back to the equilibrium. The essential 
parameter of any oscillating system is the frequency. It 
is determined by the correlation of two factors: 



70    Journal of Basic & Applied Sciences, 2013 Volume 9 Bulatov and Vladimirov 

returning forces which return the perturbed system 
towards its equilibrium and the inertial forces. For the 
internal gravity waves the returning forces are 
proportional to the vertical gradient of the fluid’s density 
and the inertial ones are proportional to the density 
itself. For the characteristic frequency of the gravity 
waves oscillations we have the following expression: 

N 2 (z) = gd ln (z) / dz . This frequency is usually called 

by the Brunt-Vaisala frequency or the buoyancy 
frequency. Here (z)  is the density considered as a 

function of the depth z , g  is the acceleration in the 

gravity force field, the sign “-” originates from the 
increase of the density with the depth and therefore 

d (z) / dz < 0 . The exact solutions of the essential 

equations describing the internal gravity waves are only 
obtained for special cases. That is the reason why the 
approximate asymptotical methods are systematically 
used for the investigation of the internal gravity wave 
fields in stratified ocean. The internal gravity waves are 
usually represented in the following integral form: 

J = exp f ( )[ ]F( )d , >>1 , where f ( )  and F( )  

are analytic functions of the complex variable ,  is a 

contour of integration on the complex plane . The 

universal way to construct the asymptotic forms of such 
integrals is the method of etalon integrals [20-23]. 

This paper is devoted to the description of a 
generalization of the geometrical optics method (WKBJ 
method), i.e. we discuss the spatio-temporal ray 
method of etalon functions. This method allows one to 
solve the problem of asymptotic modeling of the 
inharmonic wave packet’s dynamics for the internal 
gravity waves in stratified media with slowly varying 
parameters. The main reasons to use the ray methods 
are the following: the ray representations are well 
correlated with the intuition and with the empirical 
material for the propagation of the internal gravity 
waves in natural stratified media (ocean, atmosphere). 
These methods are universal and very often one can 
use only them for the approximate computations of the 
wave fields in slowly changing non-homogeneous 
stratified media [14, 15, 17]. 

The horizontal non-homogeneity and non-

stationarity are crucial for the propagation of the 

internal gravity waves in natural stratified media (such 

as the ocean and the atmosphere). To the most typical 

horizontal inhomogeneities of the real ocean we relate 

the change in the ocean bottom shape, the 

inhomogeneity of the density field and the variance of 

the mean currents. The exact solution of the problem, 

for example by means of separating of variables, can 

only be obtained when the density distribution and the 

ocean bottom shape are described by the simple model 

functions. For the arbitrary stratification and the 

arbitrary ocean bottom topography it is only possible to 

construct the asymptotic representations of the 

solutions [16, 17, 19]. 

However, if the depth or the ocean and its density 

vary slowly in comparison with the characteristic length 

(period) of the internal gravity waves, which takes place 

in the real ocean, then one can use the spatio-temporal 

ray method (the geometrical optics method, WKBJ 

method) and its generalizations to investigate the 

mathematically modeled dynamics of the internal 

gravity waves. This is the method of etalon functions. 

Its distinguishing feature is that in order to investigate 

the evolution of non-harmonic wave packets in 

stratified non-stationary horizontally non-homogeneous 

media one seeks for the solution in form of rational 

powers series with respect to the small parameter. The 

powers depend on the form of representation for the 

wave packet. The form of representation is determined 

by the asymptotic behavior of the solution in the 

stationary horizontally homogeneous case. The phase 

of the wave packet can be obtained from the 

corresponding eikonal equation, which can be solved 

numerically on the characteristics (rays). The amplitude 

of the wave packet can be found from a conservation 

law along the characteristics (rays) [14, 15, 20, 21].  

The slowness condition of the change in parameters 
of the medium in time and along the horizontal is 
crucial for applying the geometrical optics methods. 
The slowness is considered in comparison with the 
characteristic lengths and periods of internal gravity 
waves. However, these conditions are not sufficient for 
the geometrical optics methods to be valid. It is clear 
that for the estimates of the accuracy of the 
geometrical optics method one has to use the results 
obtained by a more precise approach than that of the 
spatio-temporal ray method. However because of the 
serious mathematical difficulties it is not yet possible. 
For the investigation of the dynamics of inharmonic 
internal gravity wave packets in stratified non-
homogeneous and non-stationary media we have at 
hand the analytic methods which are limited and do not 
allow one to estimate the accuracy of the geometrical 
optics method for the real media. In the general case 
there are no exact solutions, and the known rigorous 
solutions just indicate a possible value of inaccuracy for 
typical cases. The same results for the value of 
inaccuracy of the spatio-temporal ray method can be 
obtained comparing the asymptotic results with the 
approximate, but more general than that of the ray 
method, solutions of the basic wave problems. 
Therefore the validity of the spatio-temporal method 
and of its results follows from the comparison of the 
results with the data of natural experiments [5, 12, 
13,16].  
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1. PROBLEM FORMULATION 

1.1. Wave Dynamics in Vertically Stratified 
Mediums 

Generally the system of the linear equations 
describing the small movements of the originally 
quiescent incompressible non-viscous stratified 
medium in the system of the Cartesian coordinates 
(x,y,z) with the axis z directed vertically upwards, looks 
like [14-18] 

divU =Q(x,t)  

0

U

t
+ gradp + F = S(x,t)           (1) 

t
+
d 0

dz
W = K(x,t)  

where U = ( 1U , 2U ,W ) , p,  - perturbation of the 

velocity vector, pressure and density; 0 (z) – stratified 

medium density in the quiescent state; F=(0,0,g ), g- 

acceleration of the gravity. Functions Q,S,K represent 
intensities of distributions of the sources of weight, 
pulses and density accordingly. Boundary conditions 
on the free surface z = 0  and on the flat bottom z = H  

look like  

W = / t   p-g 0  =P(x,y,t)  z = 0         (2) 

W = Z(x, y,t) z = H  

Here function  (x, y, t) describes the vertical 

displacement of the free surface; P - external pressure, 
acting on the free surface; and Z – the vertical speed of 
the bottom. The initial conditions at t=0 are as follows: 

U =
*U (x) , = *(x), = *(x, y)          (3) 

where functions *U (x) , *, * - initial values of 

generations of the vector of speed, density and 
elevation of the free surface. To ensure the correct 
performance of the condition it is required to meet the 

following condition: div *U (x)  = Q ( t = 0 ) (t=0). 

By virtue of the linearity of the problem the forced 

waves are represent by the superposition of the free 

harmonious waves described by the homogeneous 

system (1) and the homogeneous boundary and initial 

conditions of (2, 3). The system (1) can be reduced to 

one equation for any of required functions, usually it is 

done for the vertical velocity component. At that the 

homogeneous system (1) and the homogeneous 

boundary conditions (2) may be presented in the form  

2

2t
(

2

2z
+ )W

2N (z)

g

W

z
+

2N (z) W = 0  

3W
2

z t
g W = 0,z = 0           (4) 

W = 0, H  

=

2

x2
+

2

y2
, 2N z( ) = g

d 0

0dz
 

The first equation from (4) is to some extend 
simplified after introduction of Boissinesq 
approximation. At usage of this approximation in the 
equations of the pulse preservation (1) the difference of 

the density from some constant value s , is 

considered only in the member describing floatability, in 
the inertial members the real density is replaced with 

the value s , and the equation (4) is reduced to the 

kind  

2

2t
(

2

2z
+ )W +

2N (z) W = 0           (5) 

The function N(z)  is one of the basic characteristics 

of the stratified medium, and has the fundamental 
value in the theory of the internal gravity waves and is 
called the buoyancy frequency or Vaisala-Brunt 

frequency. The value =2 /N defines Vaisala-Brunt 

period. For the real ocean and the atmosphere the 
value  varies from minutes up to several hours, and 
for the stratified liquid produced in the laboratory, it can 
make some seconds (Figure 1). 

 

Figure 1: Buoyancy frequency (Vaisala-Brunt frequency) 
N(z) distribution in real ocean. 

Homogeneity of the equations (4, 5) and their 
boundary conditions at the variables , , t allow to look 
for the elementary wave solutions in the field of the 
plane waves: W (x,.t) = (z)exp(ikr i t) , where k is the 

wave vector in the plane x, y;  - oscillations 

frequency; r = (x, y).  
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For function (z)  from (4) the boundary problem 

results in the following Sturm-Liouville equation 

2

2z

2N (z)

g z
+

2N (z)
2

1 2k = 0         (6) 

(0)

z
= g 2 (0) / 2,  ( H )  =0 

in Boissinesq approximation 

2

2z
+

2N (z)
2

1 2
= 0           (7)  

where k = | k |. Problems (6, 7) are the problems of the 
own values, after solution of which, there may be 
defined the system of the own values  (dispersive 

dependences) and own functions (z)  for each fixed 

value of the wave number k. The spectrum of such 
problems is always discrete, that is the system 

possesses the countable number of the modes n(z)  (n 

= 1,2,3...), to each of which there corresponds the law 
of the dispersion n = n( ).  In the case when the 

depth of the liquid is endless and the difference of the 
function N (z) from zero takes place also within the 
unlimited interval, then alongside with the discrete 
spectrum there is also a continuous spectrum. 

The knowledge of the dispersive dependences and 
their properties has the paramount value at research of 
the linear gravity waves. The basic properties of the 
own values and the own functions of the problems (6, 
7) are well studied. The own functions of the 
considered problems may be divided into to two 
classes. The first class is presented by one own 

function 0(z) , which is monotonically and quickly 

enough decreasing with the increasing depth. This own 
function poorly depends on the conditions of 
stratification and describes the superficial wave. All 
other own functions correspond to the normal modes of 
the internal waves. For the internal waves own function 

n(z)  (n=1,2,3...) has n-1 zero inside of the interval [- , 

0]. For the continuously stratified liquid of the final 
depth both for its superficial wave and for its internal 
waves is typical the monotonous increase in frequency 

 of a single mode at the growth of the wave number k, 

the monotonous reduction of the phase speeds 

fc = /  with the growth of k and at the increase of 

the mode number, and also excess of the phase 

speeds over the group speeds 
gc = d / d . The 

maximal values of the phase and the group speeds 
coincide and take place at k = 0. The significant 
difference of the superficial wave from the internal 

waves consists that in the short-wave region ( ) 

the frequency of the superficial wave is unrestrictedly 

increasing ( ~ 1/2 ), whereas the internal waves 

frequency tends to the value 
z

max N(z) .  

Rather small change of the medium density at 
changing the depth in comparison with the drop of the 
density on the water – air border allows to research the 
internal waves in the approximation of the "solid cover" 
( (0) = 0 ), which filters the superficial waves out 

without essential distortion of the internal waves. 
Approximation of "the solid cover" allows to neglect the 
first sum component in the dynamic condition of (2). 

The analytical decision of the problems (6, 7) is 
possible only for some special cases of changing of 
N(z) function. At the smooth changing of the function 
N(z) the WKBJ approximation method is frequently 
applied for the approximate calculation of the own 
values and the own functions. However this approach 
is limited by the case, when the function N(z) has no 
more than one maximum. 

More accurate results may be received by direct 
use of the numerical methods, and at the present tome 
there are several methods of the numerical solution of 
the problems (6, 7): the finite-difference approximation 
method, at which the differential equations (6, 7) and 
the boundary conditions are replaced with the system 
of the difference equations, approximation of the initial 
continuous distribution of density of the piecewise-
constant function. In this case there is a possibility of 
existence of only the final number of the wave modes. 
The analysis of the asymptotic behavior of the phases 

velocities cf  in the shortwave field has demonstrated, 

that in the stratified medium with the step-by-step 

stratification cf k 1/2 , while for the medium with the 

continuous profile of density cf k 1 . Piecewise 

constant approximation of the Vaisala-Brunt frequency. 
The numerical solution of the differential equations, 
derived from (6, 7) after introduction of the Prewfer 
modified transformations 

(z) = exp(az)sinb(z)            (8) 

d (z)

dz
= exp(az)cosb(z)  

As a result of the transformations (8) for definition of 
the dispersive dependences it is enough to solve the 
nonlinear boundary value problem of the first order for 
the function b(z) , behavior of which unlike (z)  is 

monotonous.  

The up to now cumulative experience of calculation 
of dispersive dependences demonstrates, that their 
most complex behavior arises at the presence in the 
stratified medium of several wave guides and on the 
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charts of the dispersive curves there may arise the 
nodes and crowdings, which testify, that the behavior of 
the group speeds of the internal waves becomes non-
monotonic and on some (abnormal) frequencies the 
different modes extend practically with the identical 
phase speeds, having the different group speeds. Such 
areas are called the resonant zones and in them 
conditions for an overflow of the energy from the lowest 
energy-carrying modes into the highest energy-carrying 
modes are created. This phenomenon looks like as 
insignificant in application to the linearized problem, but 
may be important at considering the nonlinear 
members. The abnormal frequencies represent the 
rather important feature of the internal waves, on them 
there is a qualitative change of the vertical structure of 
the wave field. 

The thin structure of distribution of the Vaisala-Brunt 

frequency also may bring to the similar effects of the 

crowding of the dispersive characteristics on depth. 

The dispersive curves under action of the thin 

hydrological structure can be stratified into the separate 

groups (clusters) inside which occurs the 

rapprochement of the dispersive parameters of the 

different mode, whereas the groups themselves are 

moving away from each other. Such stratification, 

apparently, may affect on the spectra of the internal 

waves in the field of the frequencies close to the 

maximum Vaisala-Brunt frequency.  

For the solution of the equations (1) with conditions 
of (2, 3) rather convenient method of solution is 
application of Green functions describing development 
of generations caused by an instant dot source, being 

on the depth of z1 . In case of the system homogeneous 

in the horizontal direction it is useful to use Fourier 
expansion 

G(r,z, z1,t) =
dk

(2 )2
d

2
ei(k r t )G(k,z, z1, )        (9) 

Then 
 
G(k,z, z1, )  should satisfy the equation of the 

following kind: 

 
LG(k,z, z1, ) = (z z1)          (10) 

L =
z 0 (z) z

+ 0k
2 N 2 (z)

2 1  

The solution of this equation one should look for in 
the form of the eigenfunctions expansion of the 
problem (6) 

 

G(k,z, z1, ) = G0 (k,z, z1)+
n
2 (k) n (k,z) n (k,z1)

2
n
2 (k)n

 

where G0 (k,z, z1)  is the solution of the equation (10) at 

 and describes an instant part of the medium 

response to the external excitation, and the sum of the 
eigenfunctions describes the contribution of the wave 

part. Usually the value G0  is rejected without any 

discussions. However in some cases, for example, at 
calculation of the amplitudes of the waves from the 
periodic sources, this component may be essential, 
because for the internal waves the law of decrease of 
the amplitudes of the wave and the non- wave parts of 
the excitation as the distance from the source of 
excitation increases is identical.  

At fulfillment of the inverse Fourier transformation 
there is an ambiguity connected with the necessity to 
set the rule for the flow past the singularities on the real 
axis . The choice of the unambiguous solution is 

achieved at imposing the causality requirement being 

reduced to the condition G(t)
t<0

0  (Green's retarded 

function). Green's retarded function corresponds to the 
solution satisfying the principle of Mandelshtam 
radiation, when the energy expands from the source. 
By virtue of the specific law of dispersion of the internal 
waves the Mandelshtam radiation condition sometimes 
does not coincide with the Zommerfeld radiation 
condition (the waves leaving the source), but the use of 
the Zommerfeld radiation principle at the choice of the 
unambiguous solution can lead to the incorrect results. 

One more method of the choice of the unambiguous 
solution is the method attributed to Relay providing for 
introduction of the infinitesimal dissipation equivalent to 
the Mandelshtam condition. Often the additional 
condition is set in the form of the requirement of 
absence of the wave excitations in the distant area 
upwards the stream (Long condition) however the 
universality of this condition is not obvious at 
considering the effect of blocking observable in the 
stratified liquids. It is also possible to use the approach, 
at which the stationary solution is considered as a limit 
at t  of the non-stationary solution for the acting in 
the stream source of excitation with the constant 
characteristics, and which is put into operation t = 0 .  

Let us underline, that the causality condition for 
Green's function is equivalent to the requirement of 
analyticity of its transient Fourier transformation in the 
upper half-plane of the complex frequencies . It 

means, that the features on the real axis should be flow 
past from above, or in accordance with Feynman rule, 
to exercise the substitution + i ( +0) , 

having shifted the features from the real axis 
downwards. The analyticity of the transient Fourier 
transformation in the upper half-plane  enables to 

write the Cramers-Cronig ratios expressing relationship 
between the real and the imaginary parts of Green 
function, and also in the case of N(z) = const  by simple 

way to construct Green function by means of the 
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analytical continuation from the “non-wave" field of 
2
> N 2  into the "wave" field of 2

< N 2  (the fields, 

where the equation of the internal waves belongs 
accordingly to the elliptic or the hyperbolic type). 

1.2. Wave Dynamics in Horizontally 
Inhomogeneous Mediums 

As is well known, an essential influence of the 

propaganda of internal gravity waves in stratified 

natural mediums (Arctic basin) is caused by the 

horizontal inhomogeneity and non-stationarity of these 

media. To the most typical horizontal inhomogeneitities 

of a real ocean one can refer the modification of the 

relief of the bottom, and inhomogeneity of the density 

field, and the variability of the mean flows. One can 

obtain an exact analytic solution of this problem (for 

instance, by using the method of separation of 

variables) only id the distribution of density and the 

shape of the bottom are described by rather simple 

model functions. If the shape of the bottom and the 

stratification are arbitrary, then one can construct only 

asymptotic representation of the solution in the near 

and far zones; however, to describe the field of internal 

waves between these zones, one needs an accurate 

numerical solution of the problem.  

Using asymptotic methods, one can consider a wide 

class of interesting physical problems, including 

problems concerning the propagation of non-harmonic 

wave packets of internal gravity waves in diverse non-

homogeneous stratified media under the assumption 

that the modification of the parameters of a vertically 

stratified medium are slow in the horizontal direction. 

From the general point of view, problems of this kind 

can be studied in the framework of a combination of the 

adiabatic and semi-classical approximations or by 

using close approach, for example, ray expansions. In 

particular, the asymptotic solutions of diverse 

dynamical problems can be described by using the 

Maslov canonical operator, which determines the 

asymptotic behavior of the solution, including the case 

of neighborhoods of singular sets composed of focal 

points, caustics, etc. [20, 21]. The specific form of the 

wave packet can be finally expressed by using some 

special functions, slay, in terms of oscillating 

exponentials, Airy function, Fresnel integral, Pearcey-

type integral, etc. The above approaches are quite 

general and, in principle, enable one to solve a broad 

spectrum of problems from the mathematical point of 

view; however, the problem of their practical 

applications and, in particular, of the visualization of the 

corresponding asymptotic formulas based on the 

Maslov canonical operator is still far from completion, 

and in some specific problems to find the asymptotic 

behavior whose computer realization using software of 

Mathematica type is rather simple. In this paper, using 

the approaches developed in [14, 15, 20, 21], we 

construct and numerically realize asymptotic solutions 

of the problem, which is formulated as follows. 

If we examine the internal gravity waves dynamics 
for the case when the undisturbed density field 

0 (z, x, y)  depends not only on the depth z , but on the 

horizontal coordinates x  and y , then, in general 

terms, if the undisturbed density is a function of 
horizontal coordinates, such a distribution of density 
induces a field of horizontal flows. These flows, 
however, are extremely slow and in the first 
approximation can be neglected. So it is commonly 

supposed that the field 0 (z, x, y)  is defined a priori, 

thus, it is assumed that there exist certain external 
sources or the examined system is non-conservative. It 
is also evident that if the internal gravity waves are 
propagating above an irregular bottom there is no such 
a problem, because the "internal wave–irregular 
bottom" system is conservative and there is no external 
energy flush. 

Then we investigated the following liberalized 

system of equations of hydrodynamics [14, 15, 17] 

0

U1

t
=

p

x
 

0

U2

t
=

p

y
 

0

W

t
=

p

z
+ g          (11)  

U1

x
+

U2

y
+

W

z
= 0   

t
+U1

0

x
+U2

0

y
+W 0

z
= 0   

Here 
 
(U1,U2,W )  is the velocity vector of internal 

gravity waves, p  and  are the pressure and density 

perturbations, g  is the acceleration of gravity ( z -axis is 

directed downwards).  

Using the Boussinesq approximation which means 

the density 0 (z, x, y) in the first three equations of the 

system (11) is assumed a constant value, the system 
(11) by applying the cross-differentiating will be given 
as  
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4W

z2 t 2
+

2W

t 2
+
g

0

(U1
0

x
+U2

0

y
+W 0

z
) = 0   (12) 

 t
( U1 +

2W

z x
) = 0 , 

 t
( U2 +

2W

z y
) = 0  

As the boundary conditions we take the "rigid-lid" 
condition: W = 0  at z = 0,H . Consider the harmonic 

waves 
 
(U1,U2,W ) = exp(i t)(U1,U2,W ) . Introduce the 

non-dimensional variable according to the formulas: 

x =
x

L
, y =

y

L
, z =

z

h
,  where L  is the typical scale 

of the horizontal variations 0 ; h  is the typical scale of 

the vertical variations 0  (for example, the thermocline 

width). 

In non-dimension coordinates the equation system 

(12) will be written as (index  is omitted hereafter)  

2 (
2W

z2
+

2 W )+

+
2 g1

0

( U1
0

x
+ U2

0

y
+W 0

z
) = 0       (13) 

2 (
2W

z2
+

2 W )+

+
2 g1

0

( U1
0

x
+ U2

0

y
+W 0

z
) = 0  

U1 +

2W

z x
= 0 , U2 +

2W

z y
= 0  

=
h

L
<<1 , g1 =

g

h
.  

The asymptotic solution (14) shall be found in the 

form usual for the geometric optics method  

 

V(z, x, y) = (i )m

m=0

Vm (z, x, y)exp(
S(x, y,t)

i
)       (14)  

 
V(z, x, y) = (U1(z, x, y),U2 (z, x, y),W (z, x, y))   

Functions S(x, y,t)  and 
 
Vm , m = 0,1,...  are subject to 

definition. From here on we shall restrict ourselves to 
finding only the dominant member of the expansion 

(15) for the vertical velocity component W0 (z, x, y) , at 

that from the last two equations (13) we have  

U10 =
i S / x

S
2

W0

z
,U20 =

i S / y

S
2

W0

z
       (15)  

S =
S

x

2

+
S

y

2

 

Substitute (14) into the first equation of the system 
(13) and set equal the members of the order O(1) 

2W0

z2
+ S

2 N 2 (z, x, y)
2 1 W0 = 0       (16)  

W0 (0, x, y) =W0 (H , x, y) = 0   

where N 2 (z, x, y) =
g1

0

0

z
 is the Vaisala-Brunt 

frequency depending of the horizontal coordinates.  

The boundary problem (16) has a calculation setup 

of eigenfunctions W0n  and eigenvalues Kn (x, y) Sn , 

which are assumed to be known. From here on the 
index n  will be omitted while assuming that further 
calculations belong to an individually taken mode.  

For the function S(x, y)  we have the eikonal 

equation  

S

x

2

+
S

y

2

= K 2 (x, y)        (17)  

Initial conditions for the eikonal S  for the horizontal 

case are defined on the line 
 
L : x0 ( ), y0 ( ) : 

 
S(x, y)

L
= S0 ( ) . For solving the eikonal equation we 

construct the rays, that is, the equation (18) with 
characteristics (rays) 

dx

d
=

p

K(x, y)
 
dp

d
=

K(x, y)

x
        (18)  

dy

d
=

q

K(x, y)
 
dq

d
=

K(x, y)

y
  

where p = S / x, q = S / y, d  is the length 

element of the ray. The initial conditions p0  and q0  

shall be defined from the system  

p0
x0

+ q0
y0

=
S0   

p0
2
+ q0

2
= K 2 (x0 ( ), y0 ( ))   

The equations (3.1.9) and initial conditions 

x0 ( ), y0 ( ), p0 ( ),q0 ( )  define the ray 

x = x( , ), y = y( , ) . After the rays are found the 

eikonal S  is defined by integration along the ray: 
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S = S0 ( )+ K(x( , ), y( , ))d
0

  

The function W0  is defined to the accuracy of 

multiplication by the arbitrary function A0 (x, y) . We shall 

find W0  given as: W0 (z, x, y) = A0 (x, y) 0
*W (z, x, y) , where 

0
*W (z, x, y)  is the solution of the vertical spectral 

problem (17) normalized as follows 

(N 2 (z, x, y) 2 ) 0
*2W (z, x, y)dz = 1

0

H

 

Finally, we can obtain a following equation 

A0
2 S + A0

2 S 3 S lnK = 0  

This equation will be solved in characteristics of the 
eikonal equation (18). Using the formula for S  along 

the rays: S =
1

J

d

d
(JK ) , where J(x, y)  is the 

geometric ray spread, we reduce the transfer equation 
(19) to the following conservation law along the rays 

d

d
ln
A0
2 (x, y)J(x, y)

K 2 (x, y)
= 0  

Note that the wave energy flash is proportional to 

A0
2K 1da , thus, from this equation it follows that, in this 

case, there survives the value equal to the wave 
energy flash divided by the wave vector modulus.  

To proceed to studying the problem of non-
harmonic wave packets evolution in a smoothly non-
uniform horizontally and non-stationary stratified 
medium we presuppose the choice of Anzatz (“Anzatz” 
is the German for a solution type), which define the 
propagation of Airy and Fresnel internal waves with 
certain heuristic arguments. The Airy waves describe 
the features of far wave internal gravity fields in shelf 
zone, the Fresnel waves describe the features of far 
wave internal gravity fields in deep ocean [14, 15, 22].  

Airy wave. Let’s introduce the slow variables 

x = x, y = y, t = t  (no slowness is supposed 

over z , the index is omitted hereafter), where 

= / L <<1  is the small parameter that characterizes 

the softness of ambient horizontal changes (  is the 

typical iternal gravity wave length, L  is the scale of a 
horizontal non-uniformity). Next we examine the 
superimposition of harmonic waves (in slow variables 

x, y,t ) 

W = (i )mWm ( ,z, x, y)
m=0

exp(F)d  

F(x, y,t) =
i

t Sm ( , x, y)[ ]  

With respect to functions Sm ( , x, y)  it is assumed 

that they are odd-numbered on  and min S /  is 

reached at = 0  (for all x  and y ). Substituting this 

representation into (20) we can easily have it proved 

that the function Wm ( ,z, x, y)  has at = 0  a pole of 

the m-th order. Therefore, as the model integral Rm ( )  

for individual terms will serve the following formulas  

Rm ( ) =
1

2

i
m 1

exp(i 3 / 3 i )d   

where the integration contour is going around the point 

= 0  from overhead, which enables the functions 

Rm ( )  to exponentially decay at >>1 . The functions 

Rm ( )  have the following feature:  

d mR ( )

d
= Rm 1( ) , at that R0 ( ) = Ai ( ) , 

R1( ) = Ai( ) , R2 ( ) = Ai(u)du , etc. It is evident, 

considering certain properties of Airy integrals, that the 

functions Rm ( )  related with each other as 

R 1( )+ 1R ( ) = 0  

R 3( )+ 2 0R ( )
2

1R ( ) = 0 . 

Fresnel wave. As the model integrals Rm ( )  that 

describe the propagation of Fresnel waves taking into 
account the solution structure for the displacement in 
the horizontally uniform case we use the following 
formulas 

R0 ( ) = Re exp it it 2 / 2( )
0

dt  

R 1( )+ i 0R ( ) = 0   

R 3( ) 2i 1R ( ) i 2R ( ) = 0  

Based on the above, nd as well on the first 
member structure of the Airy and Fresnel uniform wave 
asymptotics for a horizontally uniform medium, the 
solution of the system in (20) can be found, for 
instance, in the form (for an individually taken mode 

Wn , 
 
Un , further omitting the index n ) 

W =
0W0 (z, x, y,t)R0 ( )+  
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+

aW1(z, x, y,t)R1( )+
2aW2 (z, x, y,t)R2 ( )+… 

U =
1 a

U0 (z, x, y,t)R1( )+

  
+ U1(z, x, y,t)R2 ( )+

1+a
U2 (z, x, y,t)R3( )+…  

where the argument = S(x, y,t) / a( )
a a  is assumed to 

be of the order of unity. This expansion agrees with a 
common approach of the geometric optics method and 
space-time ray-path method. 

Note also that from such a solution structure it 

follows that the solution for a horizontally non-uniform 

and non-stationary medium shall depend on both the 

"fast" (vertical coordinate) and "slow" (time and 

horizontal coordinates) variables. Next we generally 

are going to find a solution in "slow" variables, at that 

the solution's structural elements which depend on the 

"fast" variables appear in the form of integrals of some 

slowly varying functions along the space-time rays.  

This solution choice allows us to define the uniform 
asymptotics for internal gravity wave fields propagating 
within stratified mediums with slowly varying 
parameters, which holds true either near or far away 
from the wave fronts of a single wave mode. If we need 
only to define the behavior of a field near the wave 
front, then we can use one of the geometric optics 
methods – the "progressing wave" method, and a 
weakly dispersive approximation in the form of 
appropriate local asymptotics, and find the 
representation for the phase functions argument  in 

the form: = (t, x, y)(S(t, x, y) t) a , where the 

function S(t, x, y)  defines the wave front position and is 

determined from the eikonal equation solution: 
2S = 2c (x, y,t) , where c(t, x, y)  is the maximum group 

velocity of a respective wave mode, i.e., the first 
member of the dispersion curve expansion in zero. The 
function (t, x, y)  (the second member of the expanded 

dispersion curve) describes the space-time impulse 
width evolution of Airy or Fresnel non-harmonic internal 
gravity waves, and then it will be defined from some 
arbitrary laws of conservation along the eikonal 
equation characteristics with their actual form to be 
determined by the problem physical conditions.  

2. NUMERICAL SIMULATION 

2.1. Wave Dynamics in Vertically Stratified Ocean 

Under consideration is the problem of mathematical 
modeling for the field of steady-state internal gravity 
waves generated by a non-local disturbing source (for 
example underwater sea platform) within a flow of 
stratified medium of the thickness H  with an arbitrary 
distribution of the Vaisala-Brunt frequency N(z) . The 

free surface at z = 0  is substituted with the "rigid-lid" 

which allows us to filter off the surface waves, and has 
little effect upon the internal gravity waves. It is 
assumed that a flow velocity V  exceeds the maximum 
group velocity of internal waves in real ocean. The 
disturbing non-local source vertical dimension is 
considered small as compared to the medium layer 
thickness. These assumptions mean that the internal 
Froude number is much greater than unity, so the 
pictures of the trajectories near a flowing source must 
qualitatively appear the same as in the case of the 
uniform (non-stratified) medium [14, 15, 23]. 

Parameters of the calculations are typical for Arctic 

basin and underwater sea construction: N(z) 0.01 1s , 

sea depth H 100m , stratified flow velocity V 2m / s , 

= x +Vt , horizontal scale of underwater streamlined 

obstacle is about 50 m. The numerical simulation of the 
problem stated requires quite a number of integrations 
from the fast oscillating functions, thus; first, we have to 
use methods which allow us to effectively realize the 
integrations of this type. Second, the complete wave 
field near a non-local flowing source of perturbations 
represents a poorly convergent series, and to obtain an 
adequate accuracy we have to integrate a large 
number of modes, however, the use of the static 
feature discrimination method enables the calculation 
of the field near a flowing source while avoiding such 
integrations. Finally, third, at long distances from the 
source when the complete field falls into singular 
modes, the asymptotic representations for a single 
mode of the Green’s function, make it possible to 
calculate the far fields of internal gravity waves without 
performing exact numerical calculations.  

The numerical calculation show, for example, that 
vertical velocity W is quickly decreasing with 
decreasing depth and at z = Z  ( z = Z - depth of the 

thermocline maximum) it takes about 15% of the 
velocity value at the bottom. Figure 2 demonstrate the 
calculation results in the thermocline maximum 
(integrated were 25 wave modes, the higher modes 
had not contributed much to the complete field), the 
maximum value of the displacement at this horizon 
reached 1.3 meters. The presented results show that 
there are at least three different regions of the 
generated field of internal waves. First, it is the region 
immediately under the non-local source, which has a 
width of about the medium thickness, it’s the near-field 
region. The numerical calculations have proven that the 
wave field of internal gravity waves within the near-field 
region is little dependent on a specific stratification and 
the velocity amplitude and displacement within this 
region are maximal. Secondly, at long distances from 
the non-local source (y, x >10H ,  the far-field region) 

the field of internal gravity waves falls apart into 
singular wave modes, at that each of the modes is 
contained inside its Mach cone, and outside the cline 



78    Journal of Basic & Applied Sciences, 2013 Volume 9 Bulatov and Vladimirov 

the amplitude is low. In addition to that there is a 
transition region in which the structure of the wave 
fields is rather complex. 

 

Figure 2: Internal gravity waves (vertical displacement) from 
a underwater nol-local source in stratified ocean of uniform 

depth ( = (x +Vt) /H , y = y /H  - non-dimensional horizontal 

coordinates). 

2.2. Wave Dynamics in Horizontally 
Inhomogeneous Mediums 

In Figure 3 we represent vertical component of 

internal gravity wave field velocity w  generated by a 

non-local source (underwater obstacle – sea platform) 

in arbitrary stratified ocean of non-uniform depth. 

Parameters of the calculations are typical for real 

ocean (Arctic basin): N(z) 0.001 1s , the slope of the 

bottom no more than 010 . Numerical calculations show 

a significant deformation of the wave field structure, 

taking into account the horizontal inhomogeneities 

stratified mediums. For example, it follows from the 

numerical results thus presented that, outside the 

caustic, the wave field is sufficiently small indeed and is 

not subjected to great many oscillations, whereas the 

wave picture inside the zone of caustic is a rather 

complicated system of incident and reflected 

harmonics. It is well known, that caustic is an envelope 

of a family of rays, and asymptotic solution is obtained 

along these rays. Asymptotic representation of the field 

describe qualitative change of the wave field, and that 

is description of the field, when we cross the area of 

“light”, where wave field exists, and come in the area of 

“shadow”, where we consider wave field to be rather 

small. Each point of the caustic corresponds to a 

specified ray, and that ray is tangent at this point. In 

this paper the most difficult question is considered that 

can appear when we investigate the problems of wave 

theory with the help of geometrical optics methods and 

its modifications. And the main question consists in 

finding of asymptotic solution near special curve (or 

surface), which is called caustic [20, 21].  

It is a general rule that caustic of a family of rays 

single out an area in space, so that rays of that family 

cannot appear in the marked area. There is also 

another area, and each point of that area has two rays 

that pass through this point. One of those rays has 

already passed this point, and another is going to pass 

the point. Formal approximation of geometrical optics 

or WKBJ approximation cannot be applied near the 

caustic, that is because rays merge together in that 

area, after they were reflected by caustic. If we want to 

find wave field near the caustic, then it is necessary to 

use special approximation of the solution, and in the 

paper a modified ray method is proposed in order to 

build uniform asymptotic expansion of integral forms of 

the internal gravity wave field. After the rays are 

reflected by the caustic, there appears a phase shift. It 

is clear that the phase shift can only happen in the area 

where methods of geometrical optics, which were used 

in previous sections, can’t be applied. If the rays touch 

the caustic several times, then additional phase shifts 

will be added. Phase shift, which was created by the 

caustic, is rather small in comparison with the change 

in phase along the ray, but this shift can considerably 

affect interference pattern of the wave field.  

The asymptotic representations constructed in this 

paper allow one to describe the far field of the internal 

gravity waves generated by a non-local sources in 

stratified flow. The obtained asymptotic expressions for 

the solution are uniform and reproduce fairly well the 

essential features of wave fields near caustic surfaces 

and wave fronts. In this paper the problem of 

reconstructing non-harmonic wave packets of internal 

gravity waves generated by a source moving in a 

horizontally stratified medium is considered. The 

solution is proposed in terms of modes, propagating 

independently in the adiabatic approximation, and 

described as a non-integer power series of a small 

parameter characterizing the stratified medium. In this 

study we analyze the evolution of non-harmonic wave 

packets of internal gravity waves generated by a 

moving source under the assumption that the 

parameters of a vertically stratified medium (e.g. an 

ocean) vary slowly in the horizontal direction, as 

compared to the characteristic length of the density. A 

specific form of the wave packets, which can be 

parameterized in terms of model functions, e.g. Airy 

functions, depends on local behavior of the dispersion 
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curves of individual modes in the vicinity of the 

corresponding critical points. 

In this paper a modified space-time ray method is 
proposed, which belongs to the class of geometrical 
optics methods (WKBJ method) [17, 20, 21]. The key 
point of the proposed technique is the possibility to 
derive the asymptotic representation of the solution in 
terms of a non-integer power series of the small 

parameter = / L , where  is the characteristic 

wave length, and L is the characteristic scale of the 
horizontal heterogeneity. The explicit form of the 
asymptotic solution was determined based on the 
principles of locality and asymptotic behavior of the 
solution in the case of a stationary and horizontally 
homogeneous medium. The wave packet amplitudes 
are determined from the energy conservation laws 
along the characteristic curves. A typical assumption 
made in studies on the internal wave evolution in 
stratified media is that the wave packets are locally 
harmonic. A modification of the geometrical optics 
method, based on an expansion of the solution in 
model functions, allows one to describe the wave field 
structure both far from and at the vicinity of the wave 
front.  

 

Figure 3: Internal gravity waves (vertical velocity component) 
from a underwater nol-local source in stratified medium of 

variable depth ( = (x +Vt) /H , y = y /H  - non-dimensional 

horizontal coordinates). 

Using the asymptotic representation of the wave 

field at a large distance from a non-local source in a 

layer of constant depth, we solve the problem of 

constructing the uniform asymptotics of the internal 

waves in a medium of varying depth. The solution is 

obtained by modifying the previously proposed "vertical 

modes-horizontal rays" method, which avoids the 

assumption that the medium parameters vary slowly in 

the vertical direction. The solution is parameterized, for 

example, through the Airy waves. This allows one to 

describe not only the evolution of the non-harmonic 

wave packets propagating over a slow-varying fluid 

bottom, but also specify the wave field structure 

associated with an individual mode both far from and 

close to the wave front of the mode. The Airy function 

argument is determined by solving the corresponding 

eikonal equations and finding vertical spectra of the 

internal gravity waves. The wave field amplitude is 

determined using the energy conservation law, or 

another adiabatic invariant, characterizing wave 

propagation along the characteristic curves [14, 15, 

22]. 

Modeling typical shapes and stratification of the 

ocean shelf we obtain analytic expressions describing 

the characteristic curves and examine characteristic 

properties of the wave field phase structure. As a result 

it is possible to observe some peculiarities in the wave 

field structure, depending on the shape of ocean 

bottom, water stratification and the trajectory of a 

moving source. In particular, we analyze a spatial 

blocking effect of the low-frequency components of the 

wave field, generated by a source moving alongshore 

with a supercritical velocity. Numerical analyses that 

are performed using typical ocean parameters reveal 

that actual dynamics of the internal gravity waves are 

strongly influenced by horizontal non-homogeneity of 

the ocean bottom. In this paper we use an analytical 

approach, which avoids the numerical calculation 

widely used in analysis of internal gravity wave 

dynamics in stratified ocean. 

CONCLUSIONS 

The main fundamental problems of wave dynamics 

considered in the present paper were the following: 

- construction of the exact and asymptotic 

solutions of the problem concerning the internal 

gravity waves excited by the non-local disturbing 

sources in the non-uniform stratified mediums, 

as well as development of the numerical 

algorithms for analysis of the corresponding 

spectral problems and for calculation of the wave 

disturbances for the real parameters of the 

vertically stratified mediums; 

- research by means of the modified version of the 

space-time ray-tracing method (WKBJ method), 

evolution of the non-harmonic wave-trains of the 
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internal gravity waves in the supposition of the 

slowness of variation of the parameters of the 

vertically stratified medium in the horizontal 

direction and in a time;  

- the asymptotic analysis of the critical modes of 

generation and propagation of the internal 

gravity waves in the stratified mediums, including 

the study of the effects of the space-frequency 

screening; 

- development of non-spectral methods of analysis 

of the in-situ measurements of the internal 

gravity waves for the purpose of the possible 

distant definition of the characteristics of the 

broad-band wave-trains, composing the 

measured hydrophysical fields, as well as the 

parameters of the ocean along a line of 

propagation of these wave-trains. 

The paper presented methods and approaches of 

research of the internal gravity waves dynamics 

combine the comparative simplicity and computational 

capability to gain the analytical results, the possibility of 

their qualitative analysis and the accuracy of the 

numerical results. Besides that there is a possibility of 

inspection of the trustworthiness of the used 

hypotheses and approximations on the basis of 

analysis of the real oceanological data, while the exact 

analytical solutions for the model problems do not allow 

to apply the gained outcomes, for example, for analysis 

of the problem with the real parameters of the medium, 

and the exact numeric calculation for one particular real 

medium does not give the possibility of the qualitative 

analysis of the medium with other real parameters.  

The results presented by the paper on the research 

of the dynamics of the non-harmonic wave-trains of the 

internal waves in the stratified mediums with the 

varying parameters enable analytically and numerically 

to examine effects of the special blocking, and also the 

excitation and failure of the separate frequency 

components of the propagating wave-trains.  

It is necessary to mark once again, that in 

comparison with the majority of the researches devoted 

to study of the dynamics of the internal gravity waves, 

the methods of decomposing of the fields of the internal 

gravity waves into the certain benchmark functions 

enable to describe the main peculiarities of formation of 

the critical modes of generation and propagation of the 

non-harmonic wave-trains. It is expedient also to 

emphasize, that the built asymptotic representations in 

the form of the applicable model functions can be used 

also for study of any other wave processes (acoustical 

and seismic waves, SHF-irradiation, the tsunami 

waves, etc.) in the real mediums with a complex 

structure. All fundamental results of the paper are 

gained for the arbitrary distributions of the density and 

other parameters of the non-uniform media, and 

besides the main physical mechanisms of formation of 

the studied phenomena of the dynamics of the internal 

gravity waves in the non-uniform stratified mediums 

were considered in the context of the available data of 

the in-situ measurements. 

The next step in the asymptotic study of the internal 

gravity waves should be study of the linear interaction 

of the wave-trains at their propagation as we used 

approximation of adiabatic, that is the independence of 

wave modes from each other. However, generally, the 

linear interaction (the linear conversion) of the waver 

modes is present. The phenomenon of the linear 

conversion of the internal gravity waves consists, that 

at the wave-trains passing through the non-uniform 

sections of the medium the amplitudes of the waves 

can vary non-adiabatically, that is the real amplitude-

phase characteristics of the fields are varying 

differently, than it follows from the fundamental 

approximations of the geometrical optics used in this 

paper. The detailed study of these problems will be the 

subject of further researches.  

The universal nature of the he asymptotic methods 

of research of the internal gravity waves offered in this 

paper is added with the universal heuristic 

requirements of the applicability of these methods. 

These criteria ensure the internal control of applicability 

of the used methods, and in some cases on the basis 

of the formulated criteria it is possible to evaluate the 

wave fields in the place, where the given methods are 

inapplicable. Thus there are the wide opportunities of 

analysis of the wave patterns as a whole, that is 

relevant both for the correct formulation of the 

analytical investigations, and for realization of estimate 

calculations at the in-situ measurements of the wave 

fields. 

The special role of the given methods is caused by 

that condition, that the parameters of the natural 

stratified mediums, as a rule, are known approximately, 

and efforts of the exact numerical solution of initial 

equations with usage of such parameters can lead to 

the overstatement of accuracy.  

Also popularity of the used approaches of analysis 

of internal gravity wave dynamics can be promoted just 
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by the existence of the lot of the interesting physical 

problems quite adequately described by these 

approaches and can promote the interest to the 

multiplicity of problems bound to a diversification of the 

non-uniform stratified mediums. The value of such 

methods of analysis of the wave fields is determined 

not only by their obviousness, scalability and 

effectiveness at the solution of the different problems, 

but also that they can be some semi-empirical basis for 

other approximate methods in theory of propagation of 

the internal gravity waves.  

The results of this paper represent significant 

interest for physics and mathematics. Besides, 

asymptotic solutions, which are obtained in this paper, 

can be of significant importance for engineering 

applications, since the method of geometrical optics, 

which we modified in order to calculate the wave field 

near caustic, makes it possible to describe different 

wave fields in a rather wide class of other problems 
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