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Abstract. In paper fundamental problems of wave dynamic stratified medium modeling 

(ocean, atmosphere) are considered. The basic mathematical models describing the processes 

of excitation, the propagation of internal gravity waves in vertical stratified horizontally 

inhomogeneous and non-stationary medium are presented. The uniform asymptotic forms of 
the internal gravity waves in horizontally inhomogeneous and non-stationary stratified  

medium are obtained. A modified spatio-temporal ray method is proposed, which belongs to 

the class of geometrical optics methods (WKBJ method). Analytical and numerical algorithms 

of internal gravity wave calculations for the real stratified medium  parameters are presented. 

Some results of internal gravity waves measurements in real stratified medium (ocean, 

atmosphere) and it’s interpretations are discussed. The universal nature of the developed 

asymptotic methods of modeling makes it possible to efficiently calculate the wave fields and 

qualitatively analyze the solutions obtained, which makes it possible to analyze wave patterns 

in general, to correctly set up mathematical models of wave dynamics, and to carry out express 

estimates in actual measurements of wave fields in natural stratified medium. 

 

 

1. Introduction 
The dynamics of wave motion in the natural stratified medium (ocean, Earth atmosphere) is currently 

of great interest because they are important geophysics and oceanology. As a rule, an analysis of these 

phenomena is based on asymptotic methods, because the study of unperturbed hydrodynamic 

equations leads to asymptotic expansions (Ansatzs, which is a German term for a type of solutions). 
These expansions permit solving the problems of perturbed equations, which can be used to describe 

the effects of nonlinearity, inhomogeneity, and non-stationary behavior of the real ocean. To obtain a 

detailed description of a wide range of physical phenomena related to wave dynamics of the stratified 
horizontally inhomogeneous unsteady ocean, it is necessary to start from sufficiently developed 

mathematical models, which are usually quite complicated, nonlinear, and multi-parametric. They can 

be investigated completely only using efficient numerical methods. However, there are several cases, 
in which a preliminary qualitative concept of the phenomena under study can be obtained on the basis 

of simper asymptotic models and analytic methods for studying these models. These models then enter 

a set of «blocks» used to construct the complete pattern of wave dynamics, which permits discovering 

the correlation between different wave phenomena and their relationship. Sometimes, despite the 
seeming simplicity of the model assumptions, a successive choice of the solution form allows one to 

obtain physically interesting results [1, 2].  

The propagation of internal gravity waves (IGW) in the ocean is strongly affected by the horizontal 
inhomogeneity and unsteady behavior of the basic hydro-physical parameters. In this contribution, we 

generalize a method of geometrical optics, i.e., the space-time ray method, which permits solving the 
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problem of mathematical modeling of IGW dynamics in the horizontally inhomogeneous and 

vertically stratified ocean. The ray representations agree well with the intuitive and empirical concepts 

of IGW propagation in the real ocean. This method is sufficiently universal, and in many cases, this is 
the only possible method for approximate calculations of wave fields in the ocean. The most typical 

horizontal inhomogeneities of the real ocean are the variations in the ocean floor shape, horizontal 

inhomogeneities of the density field, and unsteady ocean currents. An exact analytic solution can be 
obtained, for example, using the method of separation of variables only if the density distribution and 

the ocean floor shape can be described by sufficiently simple model functions. If the ocean floor shape 

and the ocean stratification are arbitrary, then one can construct only the asymptotic representations of 

the solution or solve the problem numerically. But the numerical solution does not permit obtaining 
and analyzing the qualitative characteristics of the wave field at large distances, which is necessary, 

for example, when solving the IGW detection problem by remote methods including, for example, the 

aerospace radiolocation.   
The mathematical modeling of IGW wave dynamics in the horizontally inhomogeneous and vertically 

stratified medium (ocean, Earth atmosphere)  is possible on the basis of a modified version of the 

space-time ray method (a method of geometrical optics, WKBJ method). The specific form of 
asymptotic representations can be determined by solving the problems, which describe the IGW 

dynamics in the vertically stratified, horizontally homogeneous, and steady-state ocean. As a rule, 

when studying the evolution of IGW packets in the ocean with slowly varying and unsteady 

parameters, it is assumed that this wave packet is locally harmonic. In contrast to the majority of 
works, in which this problem has been studied, the proposed modified method of geometrical optics 

allows one to describe the structure of wave packets near singular surfaces such as caustics and wave 

fronts. The term «geometrical optics» has different meanings in the scientific literature. The 
geometrical optics understood in the narrow (or ray) sense deals only with the methods for 

constructing images by using the rays, while the geometrical optics understood in the wide (or wave) 

sense is a method for obtaining approximate descriptions of wave fields. In the wave interpretation, 

which is used in this paper, the rays, as a rule, form only the geometric skeleton, on which the wave 
filed is «sewn on». According to the two previous interpretations of the geometrical optics, two 

periods in its development existed. The first ray period was ideologically completed by Hamilton’s 

fundamental works, which significantly influenced the development of the classical mechanics. The 
construction of rays underlies the instrumental optics, which is mainly oriented to design various 

optical devices. The contemporary wave period originates from the Debye’s works, which decisively 

influenced the formation of ray concepts in the wave theory. The asymptotic representation of 
solutions of the problem of wave packet propagation in the ocean with horizontally inhomogeneous 

density and numerical computations for typical oceanic parameters testify that the horizontal 

inhomogeneity significantly affects the real IGW dynamics in the ocean.  

All results of wave dynamics modeling presented in this paper can be used for arbitrary density 
distributions and other parameters of the stratified ocean. It is necessary to consider them in the 

context of consistency with the available data of IGW full-scale measurements in the ocean. Such 

methods for analyzing the wave fields are important not only because they are illustrative, universal, 
and efficient in various problems, but also because they can serve as a certain semi-empirical basis for 

other approximate methods in the theory of wave packet propagation in the ocean. The waves in media 

with slowly varying parameters have been studied in the vast literature, while the amount of works 
dealing with the problem of studying IGW in the media with variable parameters is rather pure 

(mainly because of significant mathematical difficulties encountered in these problems). In this paper, 

we present the basics of the space-time ray method (a method of geometrical optics) with regard to 

IGW special characteristics, which permits studying the wave dynamics in the horizontally 
inhomogeneous and vertically stratified ocean [1,2].  
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2. Problem formulation 

Our analysis starts from a linear system of hydrodynamic equations 
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 Here (u1, u2, w) are components of the IGW velocity vector; p  and   are perturbations of the 

pressure and density; g is the acceleration of gravity (the axis z is directed downwards). Using the 

Boussinesq approximation, which means that the unperturbed density ),,(0 yxz  in the first three 

equations in system (1) is assumed to be constant, we reduce system (1.1) to the form  
 

0)( 00
2

0
1

0

2

2

22

4





























z
w

y
u

x
u

g

t

w

tz

w
,                                (2) 

0)(
2

1 









xz

w
u

t
,         ,    0)(

2

2 









yz

w
u

t
      

2

2

2

2

yx 







 . 

 

As the boundary conditions, we use the «rigid lid» condition at the surface: 0W ,  (z=0,-H), where 

H is the ocean depth. We assume that, in the media with horizontally inhomogeneous density field, the 
steady-state flows due to this field can be neglected. Indeed, it follows from the hydrodynamic 

equations that if the unperturbed density is a function of horizontal coordinates, then the existence of 

the steady-state density distribution ),,(0 yxz  implies the existence of steady-state flows. These 

flows are rather slow, and they can be neglected in the first approximation. Therefore, it is usually 

assumed that ),,(0 yxz  is the background density field formed under the action of mass forces and 

non-adiabatic sources, and this field is given a priori, for example, by experimental data. 

Now we consider harmonic waves (u1, u2, w) = )W,U,U)(tiexp( 21 . System (2) cannot be solved by 

the method of separation of variables, and therefore it is necessary to use asymptotic methods. The 
scales of horizontal variations in the ocean parameters can be greater than the scales of vertical 

variability. Further we introduce the dimensionless variables: ,/,/,/ hzzLyyLxx  
 

where L  is the characteristic scale of horizontal variations in the density 0  and h  is the 

characteristic scale of vertical variations in 0 (for example, the width of the thermocline). In the 

dimensionless coordinates, system (2) becomes (hereinafter, the asterisk in the indices is omitted) 
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3. Asymptotic forms of solution 

We seek the asymptotic solution of (1.3) in the form typical of the method of geometrical optics  
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where function ),( yxS  and vector function mm ,V  = 0, 1…, are sought. As a rule, below, we 

determine only the leading term of this asymptotic expansion for the vertical velocity component 

),,(0 yxzW .  We obtain the following from the two last equations in (1.3)  
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Equating the terms of order O(1), we obtain the equation for function ),,(0 yxzW . This equation is 

written as  
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that all calculations are carried out for a separate wave mode. We use the eikonal equation 
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where  dySqxSp ,/,/  is the ray length element. The initial conditions 0p  and 0q  for 

solution (5) are determined by solving the following system  
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whose solution and the initial conditions )(),(),(),( 0000  qpyx  determine the ray 

),(),,(  yyxx . After the rays are constructed, eikonal S can be determined by integrating 
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Then, after rather cumbersome analytic calculations, we obtain the conservation law along the eikonal 

characteristics 
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where ),( yxI  is the geometric divergence of the rays (characteristics). We note that the wave energy 

flux is proportional to RKA 12
0

 , where R  is the width of an elementary ray tube; therefore, the 

quantity equal to the wave energy divided by the modulus of the wave vector is preserved in this case. 

The long-range IGW fields in the real ocean are, as a rule, non-harmonic wave packets. Indeed, at a far 
distance form perturbation sources, the complete wave field is a sum of separate wave modes whose 

asymptotics, depending on the stratification, depth, and other parameters of the ocean, can be 

expressed in terms of the Airy function or the Fresnel integrals. Therefore, to study the problem of 
wave packet evolution in a horizontally smoothly inhomogeneous and unsteady stratified medium, it is 

necessary to use another Ansatz. 
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the smoothness of the medium variations along the horizontal (   is the characteristic wave length, and 
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Further we consider the superposition of harmonic waves (in slow variables tyx ,, ) 
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where U  is the vector of IGW horizontal velocity and the phase function argument 

  aa
atyxS  /),,(  is assumed to be of the order of unity. This expansion agrees well with the 

general approach of the method of geometrical optics and the space-time ray method and is its 

generalization used to study the dynamics of IGW fields in the horizontally inhomogeneous stratified 
ocean. We also note that this structure of the solution implies that, in a horizontally inhomogeneous 

medium, the solution depends on both the «fast» (vertical coordinate) and «slow» (horizontal 

coordinates) variables. As a rule, the solution is sought in «slow» variables, and the structure elements 
depending on «fast» variables are obtained as integrals of some functions slowly varying along the 

space-time rays. This choice of the solution permits describing the uniform asymptotics of IGW fields 

propagating in the stratified ocean with slowly varying parameters, which is true both near and far 
from the wave fronts of a separate wave mode. If it is necessary to describe the behavior of the field 

only near the wave front, then one can use one of the methods of geometrical optics, i.e., the 

«traveling wave» method, and the weakly dispersion approximation in the form of the corresponding 

local asymptotics to seek the representation of the phase function argument   in the form 

 atyxtSyxt )),,()(,,( ; here function  ),,( yxtS  describes the wave front position. It is 

found by solving the eikonal equation )t,y,x(S c
22  , where ),,( yxtc  is the maximal IGW group 

velocity of the corresponding wave mode, i.e., the first term in the expansion of the dispersion curve at 

zero. Function ),,( yxt  (the second term of the dispersion curve expansion) describes the space-time 

evolution of the pulse width of non-harmonic Airy or Fresnel waves and can then be found from some 

conservation laws along the eikonal equation characteristics whose specific form is determined by the 
physical conditions of the problems under study.    

4. Comparison analytical and measurements results 

Further we compare the analytic results with the results of the analysis of measurements of IGW 

variability in a real stratified medium with horizontally varying characteristics, namely, in the 
Northwest Pacific, according to the data recorded by moorings in the «Megapolygon» experiment in 

the Northwest Pacific. The measurements of the currents and the temperature recorded by the 

«Megapolygon» moorings allowed us to study the variability of tidal internal waves over the area of 

460520 km. The length of the tidal internal wave was calculated by integration of the basic IGW 

spectral equation with the real depth distribution of the Vaisala-Brunt frequency and with zero 
boundary conditions at the ocean surface and the ocean floor taking into account the Earth's rotation. 
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The wave length of the first mode in the «Megapolygon» area is equal approximately to 130 km, the 

wave length near the Emperor Ridge is greater (167 km), and it is equal to 156 km at a distance of 2000 

km to the east. The wave propagation direction is also very stable and varies from 240 to 300 degrees, 
which corresponds to the actual wave propagation to the west and northwest from the Emperor Ridge. 

Some diffraction of tidal internal waves was observed in the «Megapolygon» study site, i.e., the 

direction of wave propagation varied from the northwest in the southeast of the site to the west in its 
northwest part. Let us consider the amplitude variations of the internal tide in the course of its 

propagation to the west and to the east from the Emperor Ridge. The IGW amplitudes were calculated 

from the deviations of the temperature values measured on moorings; then, the values were divided by 

the average vertical gradient of temperature. The calculations show that the IGW amplitude decreases 
approximately by 10% at the distance equal to the length of the tidal internal wave (130-150 km). We 

can also estimate the influence of different factors, including the horizontal inhomogeneity of density, 

on the IGW decay. In the framework of the theory discussed above, we consider the evolution of IGW 

frequency   corresponding to the semidiurnal period T 12 hours, which also admits slow variations in 

the stratification along the wave propagation path. The real geometry of the experiment allows us to 
assume that the problem under study is two-dimensional, which means that the stratification depends 

only on two variables: depth z  and distance x  along the wave propagation path [2]. 

Now we consider the case of constant depth H and stratification N linearly depending only on variable 

x : L/x)NN(N)x(N 121  , where L  is the distance between the two observation points, 

0xx
1
  is the initial point, Lxx  1  is the end point, and )x(NN ,, 2121  . We consider only the 

first mode ),(
1

xz  of the amplitude of the vertical displacement of particles and omit its index. We 

seek the amplitude ),( xz  in the form ),()(),( xzfxAxz  , where ),( xzf  is the normalized 

eigenfunction of the standard boundary-value problem for the equation of internal waves with the 
normalization 
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which has the form )
H

z
sin()x,z(f )))x(N(H(

/ 
 

22 21
2 . Amplitude )x(A  depending only 

on x  is determined from the conservation law: )(
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2

2

2
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1

1
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1
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xda
xk

xA
xda

xk

xA
 , where )x(k  is the 

absolute value of horizontal wave vector, and )(xda  is the width of an elementary wave tube. Since the 

problem is two-dimensional, the width of the ray tube does not vary along the ray and the conservation 

law is simpler: constxkxA )(/)( . Since we consider small values of  , the velocity of wave 

propagation is close to the maximum group velocity /)()( HxNxc  ; hence, the wave number is 

equal to H)x(N/)x(k   and the corresponding wave length is equal to   /H)x(N)x( 2 . 

Then, under the assumption that the observation points are at the same depth, it follows from the 

conservation law ))x(AA( ,, 2121   that 2211 NANA   or 2112  /AA . Then the total amplitude 

attains the following values ))N(H( ,

/

,, AW 22
21

21

2121 2 


 , which implies 

2
22

2
22

1

21

112 N/NWW ))N/()N((
/

  or 2
2

2
112

WW , because N , i.e., the amplitude of 

the internal gravity wave is inversely proportional to the squared wave length. The wave travel time   

along the horizontal ray is determined from the equation of characteristics )(xc
dt

dx
 , where 
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 /H)axN()x(c 1  and L/)NN(a 12  . Integrating this equation, we obtain the wave travel 

time     )/(/lnTLHa/N/Nln 121212  . The available data of full-scale tests give the 

following values of the basic parameters of the problem: 1 167 km, 2 156 km, L 2000 km. The 

wave attenuation coefficient without the wave length variations taken into account, which describes the 

amplitude decrease versus wave length, which is denoted by , gives the value of 

874020
2000167 .: .

/   with regard to relation  



/LT/t

./ WW 2012 derived from the 

observation results.  The attenuation with regard to the wave length variations along the ray, 
T/W/W 12 , with the theoretically calculated time of the wave travel time   gives the following value 

  = 0.878. Thus, the obtained estimates allow us to conclude that the influence of the density field 

inhomogeneities, which is taken into account in the above-described method for asymptotic 
representation of the wave fields, is one of the factors determining the scales of the space attenuation of 

IGW fields observed in field measurements. 

5. Conclusions 
Thus, in this paper, a general method for calculating IGW fields in the stratified medium outlined, 

namely: 

 for an arbitrary distribution of the Brunt-Väisälä frequency, the basic vertical spectral IGW 

problem is solved and the corresponding normalized eigenfunctions and eigenvalues are determined;   

 the characteristic systems with appropriate initial conditions are solved numerically; 

 after the characteristics (rays) are calculated, the eikonal (phase value) of the phase functions 

is determined by numerical integration along these rays; 

 the geometric divergence of the ray tubes is determined, for example, by numerical 
differentiation of closely located characteristics; 

 the IGW amplitude is calculated from the equations of the corresponding conservation laws 

along the rays (characteristics), where the right parts of the relations are determined by using the 

locality principle, i.e., it is assumed that the ocean parameters remain horizontally unchanged over 
specific spatial intervals.  

The universal character of the proposed asymptotic methods of modeling IGW fields in the stratified 

medium (ocean, Earth atmosphere) allows us to efficiently calculate the wave fields and, in addition, 
analyze qualitatively the obtained solutions. This opens wide opportunities for investigating the wave 

fields in general, which is also important for formulating correct statements of mathematical models of 

wave dynamics and for obtaining express evaluations in the field measurements of internal gravity 

waves [1, 2]. 

References 

[1] Bulatov V V and Vladimirov Yu V 2007 Internal gravity waves: theory and applications 

(Moscow: Nauka Publishers). 
[2] Bulatov V V and Vladimirov Yu V 2012 Wave dynamics of stratified mediums (Moscow: 

Nauka Publishers). 


