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Abstract. In this paper we investigated the far internal gravity waves fields excited by a 
source of disturbances, moving in an infinite vertically stratified medium. The propagation of 
waves in an inviscid incompressible medium with an exponential distribution of unperturbed 
density is considered. In the linear approximation and the Boussinesq approximation, 
uniform asymptotics of the excited internal gravity waves fields  were constructed far from 
the moving source of perturbations. Wave fields in the vicinity of the traverse plane and the 
horizon of motion are investigated. The obtained asymptotic solutions make it possible to 
effectively calculate the main amplitude-phase characteristics of the excited far internal 
gravity waves fields of under certain generation regimes. Analytical solutions allow to 
qualitatively analyze the solutions obtained. This is important for the correct formulation of 
more complex mathematical models of the wave dynamics of real natural stratified medium. 

1. Introduction 
An important mechanism for exiting fields of internal gravity waves (IGW) in natural (ocean, the 
Earth atmosphere) and artificial stratified media is their generation by sources of perturbation of 
various physical nature, i.e., of natural (moving typhoon, wind waves, flow past the ocean bottom 
relief imperfections, variations in the density and flow fields, leeward mountains) and anthropogenic 
(marine technological structures, collapse of the turbulent mixing region, underwater explosions) 
character. To obtain a solution of the system of hydrodynamic equations describing the wave 
perturbations of stratified media is generally a rather complicated mathematical problem from the 
standpoint of both the existence and uniqueness theorems for solutions in appropriate function classes 
and the computations. The main results obtained by solving the IGW generation problems are usually 
expressed in integral form, and the integral solutions obtained in this case require the development of 
numerical and asymptotic methods for their investigation, which permit qualitative analysis and 
express estimates of the obtained solutions [1-6].   
 To obtain a detailed description of a wide range of physical phenomena related to the dynamics of 
wave perturbations of inhomogeneous and nonstationary natural stratified media, it is necessary to 
start from sufficiently developed mathematical models. The fact that the structures of natural stratified 
media are three-dimensional also plays a significant role, and there is currently no possibility of 
performing full-scale computational experiments in simulation of three-dimensional ocean flows at 
large times with a sufficient accuracy. But in several cases, one can obtain the initial qualitative 
description of the wave phenomena in question by considering simpler analytic models. In this 
connection, it is necessary to mention the classical hydrodynamic problems of constructing asymptotic 
solutions that describe the evolution of wave perturbations generated by sources of various origination 
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in a heavy liquid. The model solutions permit obtaining further descriptions of wave fields with regard 
to the variable and unsteady behavior of the real stratified media (ocean, the Earth atmosphere). 
Several results of analysis of model linear problems describing different regimes of generation and 
propagation of wave perturbations also underlie the currently actively developed nonlinear theory of 
generation of waves of extremely large amplitude, the rogue waves [7-11].  
 The IGW dynamics simulation is currently especially urgent because of the increasing number of 
off-shore structures located on shelf oil and gas fields. Several cases of off-shore structure damage by 
internal waves of large amplitude should be noted, for example, in the Andaman Sea when one of the 
platform legs was bent by the shear flow in the internal wave in October 1997. The measurements 
show that the loads due to the IGW acting on the underwater parts of the off-structures in the vertical 
direction can be 30 times greater than the loads due to the wind waves. The action of IGW waves 
results in the powerful transport of deposition and the bed movement, especially in deep water regions, 
where the influence of wind waves, including the storm waves, is negligibly small. The IGW also 
facilitate the sediment diffusion and the deposition transport in the marine environment, and hence the 
processes of particle transport by the wave-induced flows are actively studied in different applied 
fields related to the hydrobiology (plankton and benthos migration), ecology (propagation of 
admixtures and impurities), and engineering oceanology [8-10]. 

The IGW existing in the ocean are in principle two-dimensional due to the stratification of their 
waters and three-dimensional in many cases; therefore, the computational analysis of two- and three-
dimensional non-stationary wave motions is a very complicated problem. The MIT numerical code for 
solving the complete hydrodynamic equations with regard to the real bottom relief, the Earth rotation, 
and turbulent processes was developed at Massachusetts Institute of Technology (USA) in cooperation 
with specialists in the ocean numerical simulation from the world community and has been used 
widely nowadays. This model requires a large amount of computer resources, which can be justified 
only when it is necessary to solve several practical problems of oceanology. Nevertheless, even such 
complete models do not still take into account, for example, the stable background horizontally 
inhomogeneous stratification that really exists in the ocean. To take this hydrophysical effect into 
account, it is necessary to introduce external forces that maintain this stratification inhomogeneity, but 
it is rather difficult to parameterize such forces numerically. The other currently existing methods for 
numerical modelling, including the methods based on the use of supercomputers (IGW Research 
algorithm, Riemann Solver algorithms for solving hyperbolic equations of shallow water, higher-order 
pseudo-spectral algorithm for solving HOSM hydrodynamic equations) do not always permit 
efficiently calculating specific physical problems of wave dynamics of the ocean and atmosphere with 
their actual variability taken into account, because they are oriented to solve rather general problems 
that require large computational power and do not always take into account the physical nature of the 
problems under study, which significantly restricts their practical applicability, especially in 
calculations of wave fields in real natural environments. Moreover, the use of powerful numerical 
algorithms requires verification and comparison with the solutions of model problems [9, 11-16]. 

Therefore, in the contemporary research, simplified asymptotic and analytic models are widely 
used to analyse the wave phenomena in real stratified media (ocean, the Earth atmosphere). In the 
linear approximation, the existing approaches to the description of the wave pattern of generated IGW 
fields are based on the representation of wave fields by Fourier integrals. The goal in the present paper 
is to study the far IGW fields generated by a perturbation source moving in a vertically infinite 
stratified medium.   

2. Problem formulation, integral forms of solutions 
We consider the IGW propagation in an inviscid incompressible medium with exponential distribution 

of unperturbed density λz)(exp=(z)ρ0  , i.e., we assume that the Brunt-Vaisaala frequency 

dz

(z)dρ

(z)ρ

g
=(z)N 0

0

2   is constant, const=N=λg=N(z) . In the linear approximation with 
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regard to the Boussinesq approximation, the IGW velocity components w)v,(u,  satisfy the system of 
equations [3,6,10,11] 
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where zyx F,F,F  are the mass forces and M  is the distribution density of mass sources. In what 

follows, we consider the IGW fields excited by a nonlocal source of perturbations that uniformly 
rectilinearly moves with a constant velocity V  along the axis Ox . Such a field is usually 
approximated as the field generated by a system of moving sources; in the presence of the buoyancy 
force, it is necessary to consider zF  and put the mass force components yx F,F  equal  to zero.  As a 

result, system (1) can be represented as 
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If the intermediate processes related to the beginning of the perturbation source motion are 
neglected, then the right-hand sides of (2) are functions of Vt+x=ξ , zy, . Since the problem is 

linear, the solutions of equations (2) are expressed in terms of the Green function G , i.e., in terms of 

the solution of the equation  )Vt)δt)δ(y)+δ(x=z)y,Vt,+LG(x . The solution η  of the equation 

Π=Lη  with zero right-hand side Π  is expressed in terms of the Green function G  by the formula 

dβdαdγβ)α,Π(γ,β)zα,yγ,G(ξ=z)y,η(ξ,   . The uniqueness of the solution G  is 

ensured by the radiation condition, i.e., one considers the solution of the equation with the right-hand 

side exponentially increasing with time: z)y,Vt,+t)δ)δ(exp=z)y,x,(t,LGε  , and it is assumed that 

εG exhibits the same increase in t : z)y,Vt,+(xt)G(exp=G 1ε  . Then G  is constructed uniquely and 

the solution is determined as the limit of εG  as 0ε . Applying the operator L  to the function εG , 

we obtain the equation for G: z)y,δ(ξ,=G
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Solving this equation by the Fourier method, we obtain  


 ))()(() 22222222 β+αNγ+β+αiεV(

dγdβγz))dα+βy+(i(αiexp

π)2(

1
=G  

Let us calculate the integral over γ  under the assumption that 0>z  (one can easily see that G  is 

an even function of z ). This integral is equal to the residual of the integrand pole in the upper half-

plane. For 222 N<Vα , this pole lies at the distance of the order of ε  from the real axis:
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)/( iεαV)Vi2+VαNβ+α(=γ 22222  . For 222 N>Vα , this pole lies near the 

imaginary axis: )/( iεαV)β+αVi2NVα(i=γ 22222  . Calculating the corresponding 

integral and passing to the limit as 0ε , we obtain the sought function in the form   
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22 αχ   is the arithmetic value of the root for   χ<α  and 
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where αβ+ααχ=γ 2222 / . For the dipole source of mass that is oriented along the source 

motion and has the unit moment, we obtain 
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3. Asymptotic solutions 

Further, we consider the asymptotics of the integral (3) for 1>>z+y+ξ=r 222 , i.e., the 

IGW field at a far distance from the moving source of perturbations. Since the phase function in (3) is 
an odd function of the variables βα, , we have 
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In this integral, we change the variables by the formulas χp=α , χpq=β  and put  θcosr=ξ , 

cosθsinr=y ,   sinθsinr=z  π)<θ,<0(  , i.e., we pass to the spherical coordinates θ,r, . 
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The expression 2p1   for 1>p  is understood as 1pi 2  , i.e., we bypass the cut of the 

function 2p1  as pRe in the lower half-plane. First, we determine the inhomogeneous 

asymptotics of Γ , i.e., the asymptotics that can be applied as r  for fixed values of θ,  such 
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We write the inhomogeneous asymptotics of the integral (5). It consists of the following two terms: 

the contribution of the boundary of the domain of integration and the contribution of the stationary 
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point of the phase function in (5). Since this point 0 sin cosp = p = θ  is located in the domain of 

integration and makes a contribution to the asymptotics only for 2π<θ / , we obtain 
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We use the first relation in (8) to write Φ  as 

 

 
 





0 2

2

222
q+1

))dqsinθsinq+1+θ)sinq+θcosr(p((iexp

p1

dp

Vπ4

1-
=Φ    (9) 

 

In the integral (9), just as in (4), the expression 2p1  for 1>p  is understood as 1pi 2  , 

i.e., we bypass the cut of the function 2p1  as pRe  in the lower half-plane. Further, we 

shift the contour of integration with respect to the variable q  upwards from the real axis by the value 

i  and for 0>qRe ,  rotate the contour by a certain angle )2π<<0( /  anticlockwise. With 

respect to the variable p  for 0>pRe , we rotate the contour of integration by a certain angle 

)2π<<0( /  clockwise, so that < . Then for 0θcos   and such a choice of the contours 

of integration, the exponent in (9) has negative real part, the integral absolutely converges as p , 

  q , and the order of integration in (9) can be changed 
 

 








)(iexp

i+ 2

)i(exp

02

2

22
p1

θ)p)dpsinq+θcosr((iexp

q+1

)dqsinθsinq+1r(iexp

Vπ4

1-
=Φ  

 
Now the inner integral can asymptotically be calculated for 1>>χr  as 

 
 

3

0
2

r)O(+
θ)sinq+θcosχr(

i
=

p1

θ)p)dpsinq+θcosr((iexp 






  

 
and for  ΦRe=Γ , we obtain 
 

3

2

2

22
r)O(+

θ)sinq+θcos(q+1

dq)sinθsinq+1r(iexp
Im

χrVπ4

1
=Γ 







            (10) 

 
where the pole for θctg=q   is bypassed in the lower half-plane. This function can be written as 

z)=sinθsin(r   
 

=dq
θsinqθcos

1
+

θsinq+θcos

1

q+1

)q+1z(iexp

2

1
Im

χrVπ4

1
Γ

2

2

22 










 




 

θsinqθcos

dq

q+1

)q+1z(iexp
Im

χrVπ4

θcos
=

2222

2

22 






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where the pole θctg=q   is bypassed in the upper half-plane, and the pole θctg=q , in the lower 
half-plane. Let us prove that   
 




























 1=n
n2

n
20

2222

2

)(J
2

θ
ctg+

2

)(J
π2=

θsinqθcos

dq

q+1

)q+1(iτexp
Imθcos         (11) 

 

where )(J n2   are Bessel functions [19-21]. Indeed, we denote the left-hand side of (11) by θ)F(τ(  

and obtain  
 

)(Jcosπ=))(H(iImcos=
q+1

)dqq+1(iτexp
Imcos=

τ

)F(τ
sin+τ,F 0

(1)
02

2

2

2
2 




 




,
)(  

 

Here )(H )1(
0   is the Hankel function [19-21]. Therefore, ),( τF  can be determined as the solution 

of the equation:  
2

2
02

( , )
( , ) sin cos ,

F
F + θ = π θ J ( )

τ

   


  that tends to zero as   τ  like 

  21τ /
, which follows from the above-formulated rule for bypassing the poles in the integral (10). 

Then formula (11) can be verified directly by using the recursive formulas for the Bessel functions 

[21]: ))(J)((J
2

1
=

τ

)(J
022

0
2





,  






 





 

2

)(J
+

2

)(J

4

)(J
=

τ

)(J 2+n2n22n2
2

n2
2

 . Thus, for 

1>>χr  and 0θcos  , we obtain the following asymptotic approximation for Γ in the form 

3

1=n
n2

n
20

2
r)O(+zJ

2

θ
ctg+

2

χzJ

χrπV2

1
=Γ 









 ))(

)(
(                (12) 

 

where sinθ2sin=z . It is convenient to use this formula for small χz , because z)(J n2   

exponentially tend to zero for χz>n2  and it suffices to take relatively few terms in the power series 

in 
2

θ
ctg 2 . Moreover, an additional factor of convergence is the multiplier 

2

θ
ctg 2  that vanishes for 

π=θ . For 1>>χz  and 0<θcos , formula (12) is asymptotically equivalent to (7). Indeed, for 

θcos  different from zero, 0<const<θcos  and 1>>χz , the asymptotics of the integral (10) is 

determined by the stationary point 0=q  and coincides with the second term in (6) (the first term is 

zero for 0<θcos ). If θcos  is close to zero, then it is necessary to use the asymptotics of the 

integral (10) that is uniform in θcos , i.e., with respect to the distance between the pole θctg=q   

and the stationary point 0=q . This asymptotics can be expressed in terms of the complex conjugate 
Fresnel integral and has the form  
 
 

  
θsinsinθcosr)(Vπ)2(

θ)sinsinri+4(iπexp
+2θ4πsinsinχr2T

χrπV2

)sinr(iexp
=Φ

232232 






//

/
//  
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ρπ2

)iρ4(iπexp
+)(F=)T(

2


/* ,  2θ4πsinsinχr2=ρ //   

 
i.e., differs from (7) by the term 
 

)(



T

θcossin1

θcossin11

χrπV2

)sinr(iexp
22

22

2
                               (13) 

 

We now show that this expression is small for 1>>χr . For this, we consider the function )T(ρ2  . 

Since )О(ρ=)T( 3  as ρ  and 0)T(ρ2   as 0ρ , the function )T(ρ2   is bounded 

for 0<ρ :   M<)T(ρ2  , where M  is a certain fixed number. Therefore, the expression (13) can be 
rewritten as  
 

 2θ4πsinsinχr2θcossin1

)T(ρθcossin11

χrπV2

)sinr(iexp
222

222

2
// 


 

 

Since the function )T(ρ2   is  bounded and, for 0<θcos<const<1 , the expression  
 

  )(// θcossin1+1θcossin1

θ)sin+1(2sin
=

2θ4πsinsinθcossin1

θcossin11
2222222

2








 

 

is also bounded, we see that the function (13) is of the order of 2r)(  . 

Now we consider the values 0>θcos . After the change qp,qp,  , the integral (4) takes the 
form   

 







0

2222
q+1

(iA)dqexp

p1

dp

Vπ4

1-
=)θ,Φ(r,  

)sinθsinq+1p1+θsin sinpq+θcospχr(=A 22   

On the other hand, it is obvious that  
 

 
 






0
2222

q+1

(iA)dqexp

p1

dp

Vπ4

1
=)θ,πΦ(r,  

 











2222
q+1

(iA)dqexp

p1

dp

Vπ4

1
=)θ,Λ(r,=)θ,πΦ(r,+θ,Φ(r, )  

22Vπ4

)θ,Λ(r,Re
)θ,πΓ(r,=)θ,Γ(r,


  
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Since the asymptotics of )θ,Γ(r,   for 2π>θ /  is already known, it suffices to obtain the 

asymptotics of the integral Λ . Using the second relation in (8), we can write the expression for Λ  in 
the form 
 

 
 













2

22

222
q+1

)dqq+1p1+cosqθsinr(iexp

p1

θ)dpcosrpi(exp

Vπ4

1-
=Λ  

 
and changing the order of integration, we obtain  
 

 






 


2

22

222
p1

θ))dpsinq+1p1+θcospr((iexp

q+1

)dqcosθsinrq(iexp

Vπ4

1-
=Λ        (14) 

 
The asymptotics of the inner integral for 1>>χr  is determined by the stationary phase method 

and turns out to be uniform with respect to θ,q, . As a result, we obtain 
  

=dq
q+1θ)sinq+1(

))θsinq+1+cosθsinr(q(iexp

χrVπ)2(

)4(iπexp
Λ

24122

22

223 







//

/
               (15)                  







 dq

q+θsin)q+1(

))q+1cosr(q(iexp

χrVπ)2(

)4iπ(exp
=

22412

2

223 //

/
 

Let us consider the critical points of the integral (15). These points are, first, the stationary point 
ctg=q  and, second, the two branching points θsin±i=q  that are close to the real axis for 

small θ .  If ctg  is not small, i.e., if )1(0cos  , then the asymptotics of   is the sum of the 
contributions of these points. The contribution of the stationary point can be calculated standardly. The 
contribution of the points θsini±  coincides in the leading term of the asymptotics with the value of 

the model integral: 






y)(K2=)cosθsinr(K2=

q+θsin

)dqcosrqi(exp
00

22
, where )(K0  is the 

Bessel function of the imaginary argument [20,21]. As τ , )(K0    exponentially tends to zero, 

and as 0τ  , it increases logarithmically: )(τ
η2

π
)(K0  )exp( , C

2

τ
ln~)(K0  , 

and 0.5772..=C . is the Euler constant [20,21]. Thus, if θsin  is not small (it suffices to put 
41r)(>θsin / ), then the asymptotics of Λ  is calculated by the stationary phase method [18] 

 






2222 cossinθsinχrπV2

)sinr(iexp
Λ                                                            (16) 

 

If θsin  is small, then cos  is not small ( 41r)(>θcos / ) and one must take into account the 

contribution of the branching points  θsini±  
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χrVπ2

)cosθsinr(r)Ki+4iπ(exp

cos+θsinsinχrπV2

)sinr(iexp
Λ

223
0

2222 /

/ 





                (17)                          

 
But if both θsin  and cos  are small, then the asymptotics (16) and (17) cannot be used. In this 
case, the stationary point turns out to be near the branching points and the model integral is the 

function that cannot be reduced to the known special functions [18-21]: 





22

2

x+β

)dxα)(i(xexp
=β)Ψ(α,

The asymptotics of Λ  for small cos  and θsin  can be expressed in terms of the function β)Ψ(α,  












 θsin

2

χr
,cos

2

χr
Ψ

χrVπ)2(

)2)sin+1r(i+4iπ(exp
Λ

223

2

/

//
                              (18) 

4. Conclusion   
Thus, we have considered the function z)y,Γ(ξ,  that has integral representation (4). All components 
of the IGW field generated by a moving point source of mass and dipole with the unit moment can be 
expressed in terms of the function Γ  by explicit formulas. The asymptotic of Γ at large distances 
from the moving source of perturbations    sinθsinr=z,cosθsinr=yθ,cosr=ξV,N=χ /  for 

    21χr>z // ,   41r)(>θcos /  is expressed by formula (6). Near the traverse plane 2π=θ / , for 

    21χr>z // ,   1<const<θcos , the asymptotics of Γ  is determined by formula (7). Near the 

horizontal plane of the source motion, for   21χr<z //  and in front of the source, i.e., for 0<θcos  

 π<θ<2π / , the asymptotics of Γ is given by expression (12), and as χz  and 0<θcos , this 
formula is asymptotically equivalent to (7). Finally, near the horizontal plane of the source motion 

  21χr<z //  and behind the source, i.e., for 0>θcos  and 41r(>θsin /) , the far IGW fields are 
described by expressions (14)-(18). In the far region, the generated wave fields are relatively small 
with respect to the amplitude and, as a rule, are well described by linear equations. Therefore, it is not 
expedient to use direct numerical computations to study the far IGW propagation. As was shown in 
this paper, the analytic representations of far IGW fields are described by relatively simple analytic 
expressions. The initial and boundary conditions for specific sources of perturbation must be 
determined by the results of direct numerical modelling of the complete system of hydrodynamic 
equations or by purely evaluative semi empirical considerations, which permits adequately 
approximating the real nonlocal perturbation sources by a certain system of model sources. The 
obtained asymptotic solutions allow one efficiently to calculate the basic amplitude-phase 
characteristics of the generated far IGW fields in certain generation regimes and, in addition, 
qualitatively analyse the obtained solutions; this is important for the correct statement of more 
complicated mathematical models of wave dynamics of real natural stratified media (ocean, the Earth 
atmosphere). The model solutions permit obtaining further representations of wave fields with regard 
to the real variable and unstable behaviour of such media. The research was carried out in the 
framework of the Federal target program АААА-А17-117021310375-7. 
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