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Abstract—The problem of constructing uniform asymptotics for the far fields of internal gravity waves
generated by a pulsating localized source of perturbations in finite-depth stratified medium flow is con-
sidered. The solutions obtained describe the wave perturbations both inside and outside the wave fronts
and can be expressed in terms of the Airy function and its derivatives. Numerically calculated wave
patterns of the excited wave fields are presented.
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One of the main mechanisms of excitation of internal gravity waves in natural stratified media (ocean,
atmosphere) is the wave generation by nonstationary sources of perturbations, different in physical nature,
both of natural (moving typhoons, flow about ocean relief irregularities, leeward mountains, etc.) and an-
thropogenic (sea technological structures, collapse of turbulent mixing regions, underwater explosions, etc.)
origin [1–5]. In the linear approximation, the far wave fields can be investigated, for example, using various
asymptotics [3–9]. The analytical expressions constructed make it possible to obtain, using, for example,
methods of computer mathematics, asymptotic representations of wave fields with account for the realistic
inhomogeneity and non-stationarity of the parameters of natural stratified media [3–5].

The present study is aimed at constructing asymptotic solutions that can describe the far fields of the in-
ternal gravity waves excited by a pulsating localized source of perturbations in finite-depth stratified medium
flow.

1. PROBLEM FORMULATION AND INTEGRAL FORMS OF THE SOLUTIONS

Consider the problem of far fields of the internal gravity waves that arise as a point source of power Q
perturbations is flowed around by a stratified medium of thickness H . Assume that the source power is a
harmonic function of time Q = qexp(iωt). The source moves at a velocity V in the horizontal direction
along the x axis. The z axis is directed upward and the source location depth is z0. The established regime
of wave oscillations is considered.

In the linear formulation, in the Boussinesq approximation, we have the following equations, for ex-
ample, for the vertical displacement of the isopycns η(x, y, z) as curves of equal density with the same
harmonic time dependence [3–5]:

(
iω + V

∂
∂x

)2

(Δη) + N2(z)(Δ2η) = Q

(
iω + V

∂
∂x

)
δ (x)δ (y)δ ′(z − z0), (1.1)

Δ = Δ2 +
∂ 2

∂ z2 , Δ2 =
∂ 2

∂x2 +
∂ 2

∂y2 ,
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where N2(z) =− g
ρ0(z)

dρ0(z)
dz

is the Brent–Vaissala frequency assumed in what follows to be constant

(ρ0(z) is the unperturbed density) and δ (x) the Dirac delta function. The function η(x, y, z) is linked

with the vertical velocity component w(x, y, z) by the relation w(x, y, z) =

(
iω + V

∂
∂x

)
η(x, y, z) [3–5].

As boundary conditions we use the “rigid lid” condition

η = 0 at z = 0, −H. (1.2)

In the dimensionless coordinates x∗ = xπ/H , y∗ = yπ/H , z∗ = zπ/H , η∗ = ηH2V/qπ2, ω∗ = ω/N,
t∗ = tN, Eq. (1.1) and boundary conditions (1.2) can be rewritten as follows (in what follows the superscript
“*” is omitted):

(
iω + M

∂
∂x

)2

(Δη) + (Δ2η) =

(
iω + M

∂
∂x

)
δ (x)δ (y)δ ′(z − z0), (1.3)

η = 0 at z = 0, −π,

where c = NH/π is the maximum value of the group velocity of the internal gravity waves in the stratified
medium layer of thickness H [3–5] and M = V/c. In what follows we will consider the case of M > 1.

We will seek the solution of problem (1.3) in the form of the Fourier integral

η(x, y, z) =
1

4π2

∞∫

−∞

dν
∞∫

−∞

ϕ(μ , ν , z)exp(−i(μx + νy))dμ . (1.4)

For the function ϕ(μ , ν , z) we have the following boundary-value problem:

∂ 2ϕ
∂ z2 + k2

(
1

(ω − μM)2 − 1

)
ϕ =

i
(ω − μM)

∂δ (z − z0)

∂ z0
, k2 = μ2 + ν2, (1.5)

ϕ = 0 at z = 0, −π.

The solution of problem (1.5) can be represented in the form of the sum of vertical (normal) modes

ϕ(μ , ν , z) =
∞

∑
n=1

ϕn(μ , ν , z) =
∞

∑
n=1

Bn(μ ,ν)cos nz0 sinnz, i.e., in the form of a series in the eigenfunctions

of the homogeneous boundary-value problem (1.5), where

Bn(μ , ν) =
2ni

π(ω − μM)

1
k2Ω − n2 , Ω =

1
(ω − μM)2 − 1. (1.6)

Finally, the solution of problem (1.4) can be represented in the form

η(x, y, z) =
∞

∑
n=1

ηn(x, y)cos nz0 sinnz, ηn(x, y) =
1

4π2

∞∫

−∞

dν
∞∫

−∞

Bn(μ , ν)exp(−i(μx + νy))dμ .

Equating to zero the denominator k2Ω − n2 from (1.6), we obtain the dispersion relation that links the
horizontal μ and vertical ν components of the wave vector k

k2
(

1
(ω − μM)2 − 1

)
= n2, n = 1, 2, . . . (1.7)

Now consider the case of ω < 1 and, to be definite, the first wave mode (n = 1). The dispersion equation
(1.7) has two real μ1(ν) and μ2(ν) and two complex conjugate λ1(ν) and λ2(ν) solutions. The problem
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of going around the poles μ1(ν) and μ2(ν) at the real axis of the integration variable μ is solved using the
perturbation method. Replacing in (1.7) ω by ω − iε (ε > 0), it can be shown that the imaginary parts of
the perturbed solutions μ1(ν) and μ2(ν) are negative for all ν . Thus, in (1.6) the contour of integration with
respect to the variable μ passes above the real axis.

We investigate the far fields of the internal gravity waves; therefore, when closing the contour of inte-
gration with respect to μ we only take into account the poles at the real axis, the contribution of the poles
λ1(ν) and λ2(ν) to the total wave field being exponentially small at large ∣x∣. Thus, we have the following
expression for the function η(x, y, t) at ∣x∣ ≫ 1:

η(x, y, t) =
2

∑
i=1

1
2π

∞∫

−∞

Ai(ν)cos

(
μi(ν)x − νy − ωt

)
dν = J1 + J2, (1.8)

Ai(ν) =
M
2

(μiM − ω)2

μiω + Mν2 + μi
(
μiM − ω

)3 .

2. CONSTRUCTING NONUNIFORM ASYMPTOTICS FOR THE SOLUTIONS

Consider the behavior of the integrals J1 and J2 from (1.8), which correspond to the dispersion curves
μ1(ν) and μ2(ν) at large positive x. The dispersion relation (1.7) is a fourth-power algebraic equation of
general form. Explicit formulas, like Ferrari’s, are very cumbersome; nevertheless, it is the explicit formulas
that are used by computational systems, like “Mathematica”. This enables us to operate not only with the
solutions μ1(ν) and μ2(ν) but also with their first- and second-order derivatives. In Fig. 1, the dispersion
curves μ1(ν) and μ2(ν) are shown for M = 1.8 and ω = 0.52. In what follows all calculations will be
presented for the same parameter values.

First consider the integral J1. Introduce the notation Φ1 = μ1(ν)x − νy − ωt. Then, using the phase
stationarity condition in the form

μ ′1(ν) = y/x, (2.1)

we obtain the family of constant-phase curves for various Φ1 values with ν as a parameter

x =
Φ1 + ωt

μ1(ν) − νμ ′1(ν)
, y =

μ ′1(ν)(Φ1 + ωt)
μ1(ν) − νμ ′1(ν)

.

In Fig. 2, the equal-phase curves 1 are plotted for t = 10 and Φ1 = 2πn (n = 0, 1, 2, . . . , 6.) The right
branch of the dispersion curve μ1(ν) (ν > 0) corresponds to the upper part of the figure (y > 0). By virtue
of symmetry, we will consider the upper region alone. In Fig. 1, the part of the dispersion curve from
zero to point A corresponds to transverse waves, whereas the part from point A to infinity corresponds to
longitudinal waves. Point A is an inflection point and corresponds to line 2 in Fig. 2, i.e., to the wave front
within which the traveling wave described by the integral J1 propagates. The equal-phase curves propagate
from the origin of coordinates to infinity and along the ray have the phase velocity

Cf =
ω
√

1 +
(
μ ′1(ν)

)2

μ1(ν) − νμ ′1(ν)
.

Equations for the longitudinal waves in the neighborhood of the x axis can be obtained in the explicit
form using the asymptotic behavior of the dispersion curve at large ν

μ1(ν) =
1 + ω

M
− 1

2M
ν−2 + . . . .

This equation has the form

y =± 2
√

2(1 + ω)2

3
√

3(2πk + ωt) M3/2

(
x − (2πk + ωt)M

1 + ω

)3/2

.
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μ
μ1

μ2

Fig. 1. Dispersion curves μ1(ν) (1) and μ2(ν) (2): A and B are points of inflection; C is root of the equation μ ′2(ν) =−μ/ν .

Fig. 2. Equal-phase curves for J1: (1) equal-phase curves; (2) wave front.

Reproduce two other important characteristics of the wave fields, which are determined by the behavior
of the integral J1. The first of them is the wavelength, for example, the length of the transverse wave
along the x axis λ = 2πμ1(0) = 11.2. The second is the angle of half-opening of the wave wedge Θ =
arctan

(
μ ′1(ν∗)

)
= 11.8∘, where ν∗ is the root of the equation μ ′′1 (ν) = 0 and the wave front itself has the

form y = Rx, R = μ ′1(ν∗).
In the stationary-phase approximation, the integral J1 has the form [5, 10, 11]

J1 =
A1(ν1)√

2πμ ′′1 (ν1)x
cos

(
μ1(ν1)x−ν1y−ωt +

π
4

)

+
A1(ν2)√−2πμ ′′1 (ν2)x

cos

(
μ1(ν2)x−ν2y−ωt− π

4

)
,

(2.2)

where ν1 and ν2 are two roots of Eq. (2.1), ν1 lying on the left of point A at the dispersion curve and ν2 on
the right. In (2.2), the first term describes transverse waves and the second longitudinal waves.

Now consider the integral J2. Represent the phase Φ2 in the form Φ2 = −μ2(ν)x − νy + ωt. The
integral J2 remains unchanged and at y > 0 the stationary points are positive. Then, the family of constant-
phase curves at various Φ2 with the parameter ν

x =
Φ2 − ωt

−μ2(ν) + νμ ′2(ν)
, y =

μ ′2(ν)(Φ2 − ωt)
μ2(ν) − νμ ′2(ν)

is described by a more complicated pattern shown in Fig. 3. The ray equation has the form μ ′2(ν) = −y/x.
In Fig. 1, the point of inflection B corresponds to the wave front (line 3 in Fig. 3), and point C, the root of
the equation μ ′2(ν) = −μ/ν , corresponds to line 4 in Fig. 3. The part of the dispersion curve from zero
to point B corresponds to transverse wave crests, the part from point B to point C to the longitudinal crests
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Fig. 3. Equal-phase curves for J2: (3) wave front; (5) equal-phase curves; line (4) separates two regions (1) and (2) (equal-
phase curves).

located between lines 3 and 4 in Fig. 3 (region 1), and the part to the right of point C to the longitudinal
crests located between line 4 and the x axis (region 2). The crest phases which correspond to the location of
the parameter ν at the dispersion curve from zero to point C have values 2πn (n = 0, −1, −2, −3, −4, and
−5) and those which correspond to its location to the right of point C have values 2πn (n = 0, 1, 2, 3, 4, and
5) (t = 10). In region 1, the equal-phase curves propagate from the origin of coordinates to infinity and in
region 2 from infinity to the origin of coordinates. In both cases, the group velocity vector is directed from
the origin of coordinates toward infinity since this is the direction in which energy propagates. The length
of the transverse wave along the x axis is equal to λ = −2π/μ2(0) = 33.6 and the angle of half-opening
of the wave wedge to Θ = arctan

(
μ ′2(ν∗)

)
= 21.7∘, where ν∗ is the root of the equation μ ′′2 (ν) = 0. In the

stationary-phase approximation, J2 looks similar to (2.2).

3. CONSTRUCTING UNIFORM ASYMPTOTICS FOR THE SOLUTIONS

Consider uniform asymptotics for the integral J1 (asymptotics for J2 are constructed similarly). The
stationary-phase approximation (2.2) does not work in the neighborhood of the wave front, where μ1(ν)′′→0
and the stationary points merge. Therefore, we will represent the phase of the integral J1 in the form
Φ1 = xS(ν , r) − ωt, S(ν , r) = μ1(ν) − rν , r = y/x. In order to reduce the integral to the reference or
canonical form, we will make the change of variables [5, 10, 11]

S(ν , r) = a + σs − s3/3, (3.1)

where the parameters a and σ can be unambiguously determined from the requirement of coincidence of
the stationary points in (3.1), that is, the roots ν1 = ν1(r) and ν2 = ν2(r) of the equation S′ν(ν , r) = 0

and s1,2 = ±√σ : a(r) =
(
S(ν1, r) + S(ν2, r)

)
/2, σ(r) =

(
3/4
(
S(ν1, r) − S(ν2, r)

))2/3
. The uniform

asymptotic approximation of the integral J1 then has the form [10, 11]

J1 =
T+(r)

x1/3
Ai(x2/3σ(r))cos(a(r)x − ωt) +

T−(r)

x2/3
√

σ(r)
Ai′(x2/3σ(r))sin(a(r)x − ωt), (3.2)

T± =
1
2

[
A1(ν2)

√
−2
√

σ(r)
S′′νν(ν2, r)

± A1(ν1)

√
2
√

σ(r)
S′′νν(ν1, r)

]
,
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Fig. 4. Integral J1 along the ray.

Fig. 5. Elevation of the internal gravity waves from a moving pulsating source of perturbations.

where the first term in (3.2) can be expressed in terms of the Airy function Ai(x) =
1

2π

∞∫

−∞

cos

(
xt − t

3

)3

dt

and the second in terms of the derivative of the Airy function.
The asymptotic approximation (3.2) is applicable in the neighborhood of the wave front, whereas far

from the front it goes over into the nonuniform approximation (2.2), which can be verified by replacing the
Airy function and its derivative by their asymptotics at large positive argument values

Ai(x) ∼ 1√
πx1/4

cos

(
2
3

x3/2 − π
4

)
, Ai′(x)∼ x1/4

√
π

cos

(
2
3

x3/2 +
π
4

)
.

Outside the wave wedge the uniform asymptotic approximation (3.2) is exponentially small since there
are no real stationary points but a pair of complex conjugate points. Near the wave front the field is of the
order O(x−1/3), the first term in (3.2) predominating. Far from the front the asymptotic approximation (3.2)
goes over into the stationary-phase approximation (2.2), both terms being of the order O(x−1/2). Each of
the two terms that form this approximation is a function rapidly oscillating in space, whose amplitude varies
smoothly. The oscillation frequencies differ and are determined by the stationary points ν1(r) and ν2(r). In
the uniform approximation, each term is also a rapidly oscillating function with slowly varying amplitude
described by the Airy function and its derivative, the oscillation frequencies being the same and equal to the
half-sum of eikonals at the points ν1(r) and ν2(r). The frequencies of the envelopes also coincide and are
equal to the difference of eikonals at the same points. From this there follows that along the ray the uniform
asymptotic approximation yields the wave pattern of pulsations. Figure 4 demonstrates the pattern of wave
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pulsations calculated by formula (3.2) for the integral J1 at r = 0.06. The oscillation frequency is here
approximately an order greater than the envelope frequency. In Fig. 5, the three-dimensional wave pattern
of the elevation η(x, y) = J1 + J2 of the internal gravity waves from a pulsating source of perturbations is
shown. In particular, the wave fronts corresponding to J1 and J2 can be seen.

Summary. The uniform asymptotic problem solutions obtained enabled us to describe the far fields of the
internal gravity waves from a localized pulsating source of perturbations in finite-thickness stratified medium
flow both outside and inside the corresponding wave fronts. It is shown that the far field asymptotics make
it possible to efficiently calculate the main characteristics of the wave fields and to qualitatively analyze the
solutions obtained. This opens wide opportunities for studying wave patterns as a whole, which is important
for correctly constructing the mathematical models of gas dynamics, including for express-estimating in
natural measurements of wave fields. Note that such wave patterns can be observed in the remote probing
and observation of the internal gravity waves excited by various sources of perturbations in both the ocean
and Earth’s atmosphere [1, 5, 9].

The work was in part supported financially by the Russian Foundation for Basic Research (project
No. 14-01-00466).
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