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Abstract—The problem of constructing uniform asymptotics for the far fields of surface disturbances
produced by a localized pulsating source in a heavy homogeneous infinite-depth fluid is considered.
The wave pattern of the excited fields is the sum of waves of two types, namely, annular and wedge-
shaped. The solutions obtained describe the wave disturbances far from the pulsating source both inside
and outside the Kelvin wave wedges.
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The state of the free surface of the ocean is influenced by both inhomogeneities within the water thickness
(obstacles in a flow, variations in the bottom relief and the density and flow fields, etc.) and different
disturbance sources [1–6]. To correctly interpret the data of the distant sounding of the sea surface the
reasons resulting in some and other surface phenomena must be known. Thus, the problem of investigating
the surface oscillations of a density-inhomogeneous and unsteady sea medium and bringing the simulation
results into agreement with observable surface waves remains topical. To describe in detail a wide range of
physical phenomena associated with the dynamics of surface disturbances of inhomogeneous and unsteady
natural media fairly developed mathematical models are used [5, 6].

In certain cases the qualitative representation of a phenomenon under study can be obtained on the
basis of simple asymptotic models and analytical methods of their investigation. We note the classical
fluid dynamics problems of the construction of asymptotic solutions describing the evolution of surface
disturbances excited by localized sources in a heavy homogeneous fluid [2, 3, 7, 8]. The model solutions
derived make it possible to obtain then the asymptotic representations of the wave fields with account for
the variability and unsteadiness of natural media [4–6].

The purpose of this study is to construct uniform asymptotics for the far fields of the surface disturbances
excited by a localized pulsating disturbance source in a flow of heavy homogeneous infinite-depth fluid. The
case of the steady disturbance source was considered in [8].

1. FORMULATION OF THE PROBLEM AND INTEGRAL FORMS OF SOLUTIONS

We will consider the steady pattern of wave disturbances on the surface of a flow of an ideal heavy
infinite-depth fluid moving at a velocity V in the positive direction of the x axis. The waves are generated
by a pointwise pulsating source located at a depth H (the z axis is directed upward from the undisturbed
fluid). The source intensity varies in accordance with the q = exp(iωt)exp(εt) law (−∞ < t < ∞); in what
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follows, we will seek the limit of the solution, as ε → 0. Due to the problem linearity, in order to calculate
the field of the disturbances produced by a pulsating source of an arbitrary intensity Q = const it is sufficient
to multiply by Q the result obtained for the source of the unit intensity q.

The potential disturbance Φ(x, y, z, t) relative to a homogeneous flow moving at a velocity V (∇Φ =
(u, v, w), where u, v, and w are the components of the disturbance (V, 0, 0)) is governed by the equation
with the corresponding linearized boundary condition on the fluid surface [2, 3, 8]

ΔΦ(x, y, z, t) = exp(iωt)exp(εt)δ (x)δ (z + H), z < 0,(
∂
∂ t

+ V
∂
∂x

)2

Φ + g
∂Φ
∂ z

= 0, z = 0.
(1.1)

Here, Δ is the three-dimensional Laplace operator and δ (x) is the Dirac delta function. The solution of
problem (1.1) is sought in the form Φ(x, y, z, t) = exp(iωt)exp(εt)ϕ(x, y, z), where the function ϕ(x, y, z)
is determined from the problem

Δϕ(x, y, z) = δ (x)δ (y)δ (z + H), z < 0,(
iω + ε + V

∂
∂x

)2

ϕ + g
∂ϕ
∂ z

= 0, z = 0.

The Fourier image of the potential ϕ(x, y, z)

Ω(μ , ν , z) =

∞∫

−∞

exp(iμx)dx

∞∫

−∞

exp(iνy)ϕ(x, y, z)dy

is determined from the boundary value problem

∂ 2Ω(μ , ν , z)
∂ z2 − k2Ω(μ , ν , z) = δ (z + H), z < 0,

(iω + ε − iμV )2Ω(μ , ν , z) + g
∂Ω(μ , ν , z)

∂ z
= 0, z = 0,

Ω(μ , ν , z)→ 0, z→ ∞, k2 = μ2 + ν2,

whose solution in the domain −H < z< 0 is as follows:

Ω(μ , ν , z) =− (ω − μV )2 sinh(kz) + gk cosh(kz)
k exp(kH)((ε + i(ω − μV ))2 + gk)

.

The free surface elevation η(x, y, t) is related with the potential Φ(x, y, z, t) by the condition [2, 3]

η(x, y, t) =−1
g

(
∂
∂ t

+ V
∂
∂x

)
Φ(x, y, z, t)

=
−exp(iωt + εt)

g

(
i(ω − iε)ϕ(x, y, z) + V

∂ϕ(x, y, z)
∂x

)
, z = 0.

Then the Fourier image Λ(μ , ν , t) of the function η(x, y, t) takes the form:

Λ(μ , ν , t) =
i(ω − μV )exp(iωt)exp(−kH)(

ε + i(ω − μV )
)2

+ gk
.

In this expression the parameter ε is retained only in the denominator; this is necessary for determining
the integrand pole displacement with respect to the real axis into the upper or lower half-plane. Performing
the inverse Fourier transformation we obtain

η(x, y, t) =
iexp(iωt)

4π2

∞∫

−∞

exp(−iνy)dν
∞∫

−∞

(ω − μV )exp(−kH − iμx)dμ
(ε + i(ω − μV ))2 + gk

. (1.2)
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Fig. 1. Dispersion curve k1(ψ). Fig. 2. Dispersion curve k2(ψ).

In the polar coordinates (x = r cos α , y = r sin α), (μ = k cos ψ , ν = k sinψ) expression (1.2) takes the
form:

η(r, α , t) =
exp(iωt)

4π2i

2π∫

0

dψ
∞∫

0

(ω − kV cosψ)k exp(−kH − ikr cos(ψ − α))

(ω − iε − kV cosψ)2 − gk
dk. (1.3)

In Eq. (1.3) the inner integral is calculated using the residue theorem. To do this it is necessary to
determine the poles of the integrand which are the roots of the dispersion equation

(ω − kV cosψ)2 = gk, (1.4)

where k1,2(ψ) = g(1 + 2mcosψ ∓√1 + 4mcos ψ)/(2V 2 cos2 ψ) and m = V ω/g; the minus and plus signs
correspond to the roots k1 and k2, respectively.

In what follows, we will consider the case in which the dispersion equation (1.4) has two real positive
roots for any values of ψ . In order for this to happen the condition m < 1/4 must be fulfilled. Using the
disturbance method it can be shown that at ε > 0 the root k1(ψ) is displaced into the lower half-plane of
the complex plane k for any values of ψ . The root k2(ψ) is displaced into the lower half-plane at cosψ > 0
and into the upper half-plane at cosψ < 0. In Figs. 1 and 2 we have plotted the dispersion curves k1(ψ) and
k2(ψ), respectively, in the (ν , μ) plane. All numerical calculations are carried out for the following values
of the parameters: V = 2.4 m/s, ω = 1 s−1, g = 9.8 m/s2, and m = 0.245.

We will first consider the contribution made by the root k1(ψ) into expression (1.3) for η(r, α , t). The
function η(r, α , t) is even with respect to the argument α ; for this reason, below we will assume that
0< α < π . We will rotate counterclockwise by π/2 the contour of integration with respect to the variable k
under the condition that cos(ψ − α)< 0; in this case, the residue is not taken into account and the integral
along the imaginary axis is of the order O(1/r2), as r→ ∞. At cos(ψ − α) > 0 the integration contour is
rotated by π/2 clockwise and then, with account for the residue, we obtain

η1(r, α , t) =
exp(iωt)

2π

π/2+α∫

−π/2+α

B(k1(ψ), ψ)exp(−ik1(ψ)r cos(ψ − α))dψ ,

B(k, ψ) =
(ω − kV cosψ)k exp(−kH)

2V cos ψ(ω − kV cosψ) + g
.

We will now consider the contribution made by the root k2(ψ) into expression (1.3) for η(r, α , t). In the
case in which cos(ψ − α) < 0 the integration contour is rotated by π/2 counterclockwise. The integral
along the imaginary axis is of the order O(1/r2), as r→ ∞, and the residue contributes only at cosψ < 0.
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As a result, we obtain

η2(r, α , t) =−exp(iωt)
2π

3π/2∫

π/2+α

B(k2(ψ), ψ)exp
(− ik2(ψ)r cos(ψ − α)

)
dψ .

In the case in which cos(ψ − α) > 0, the integration contour is rotated by π/2 clockwise. The residue
makes the contribution at cosψ > 0 and the integral along the imaginary axis is also of the order O(1/r2),
as r→ ∞. As a result, we obtain

η3(r, α , t) =
exp(iωt)

2π

π/2∫

−π/2+α

B(k2(ψ), ψ)exp
(− ik2(ψ)r cos(ψ − α)

)
dψ .

The free surface elevation can be represented as the sum of three terms

η(r, α , t) = η1(r, α , t) + η2(r, α , t) + η3(r, α , t)

=
exp(iωt)

2π
(J1(r, α) + J2(r, α) + J3(r, α)).

2. DERIVATION OF THE ASYMPTOTIC SOLUTIONS

We will consider the behavior of the integrals J1(r, α), J2(r, α), and J3(r, α) describing the full wave
field of the surface disturbances far from the pulsating source, that is, at large values of r.

We will first evaluate the integral J1(r, α). The phase function q(ψ , α) = k1(ψ)r cos(ψ − α) has a single
stationary point on the integration interval (−π/2 + α , π/2 + α) for all −π < α < π . It is determined
from the equation ∂q(ψ , α)/∂ψ = 0 or k1(ψ) tan ψ − k′1(ψ)/k′1(ψ) tan ψ + k1(ψ) = tan α . We will denote
this stationary point as ψ0(α). It can be shown that ∂ 2q(ψ0(α), α)/∂ψ2 > 0 for all values of α . Then the
asymptotics of the integral J1(r, α) are calculated using the stationary phase method and takes the form:

J1(r, α) =
√

2π
(

r
∂ 2q(ψ , α)

∂ψ2

)−1/2

B(k1(ψ , ψ)exp(i(rq(ψ , α) + π/4)), ψ = ψ0(α). (2.1)

The integral J1(r, α) is associated with the annular waves on the free surface of a fluid diverging from a
pulsating oscillation source. In Fig. 3 the wave pattern of the surface disturbances is presented in the form
of the function ReJ1(r, α) calculated according to Eq. (2.1) at the source depth H = 5 m.

We will then consider the integral J3(r, α). We will denote A = arctan Θ, where Θ is the maximum value
with respect to ψ on the interval (−π/2, 0) of the expression k2(ψ) tan ψ − k′2(ψ)/k′2(ψ) tanψ + k2(ψ).

The value of A determines the boundaries of the wave wedge (Kelvin wedge) described by the equation
y = ±x tanA; in the case under consideration tan A = 0.284. Then on the integration interval (−π/2 +
α , π/2) the phase function q(ψ , α) = k2(ψ)r cos(ψ − α) has two stationary points ψ1(α) and ψ2(α)
(ψ1(α) < ψ2(α)) at α < A, none at α > A, and the coalescing stationary points ψ1(α) = ψ2(α) at α = A.
Inside the wave wedge the field can be calculated using the stationary phase method, in which case both
stationary points ψ1(α) and ψ2(α) make the contribution; outside the wave wedge the field is exponentially
small. However, as distinct from the integral J1(r, α), the asymptotics calculated using the stationary phase
method are nonuniform, since ∂ 2q(ψ1(A), A)/∂ψ2 = 0. For this reason, in the vicinity of the boundary of
the Kelvin wave wedge the asymptotics calculated using the stationary phase method are inapplicable.

The uniform asymptotics of the integral J3(r, α) for large values of r and for all 0 < ∣α ∣ < π are con-
structed in the same way, as in [8, 9], and take the form:
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Fig. 3. Annular waves corresponding to ReJ1(r, α). Fig. 4. Ship waves corresponding to ReJ3(r, α).

Fig. 5. Ship waves corresponding to ReJ2(r, α). Fig. 6. Sum of two ship waves Re(J2(r, α) + J3(r, α)).

J3(r, α) =
2π exp(irλ (α))

r1/3
(0.5(F(

√
σ(α)) + F(−

√
σ(α)))Ai(r2/3σ(α))

− i
F(
√

σ(α)) − F(−√σ(α)

2r1/3
√

σ(α)
Ai′(r2/3σ(α))),

λ (α) = (q(ψ1(α), α) + q(ψ2(α , α))/2, σ(α) = (3(qψ2(α), α) − q(ψ1(α), α))/4)2/3,

F(
√

σ(α)) = f2(α)

√
−2
√

σ(α)

T2(α)
, F(−

√
σ(α)) = f2(α)

√
2
√

σ(α)

T1(α)
,

f j(α) = B
(
k2(ψ j(α), α)), ψ j(α)

)
, Tj(α) =

∂ 2q(ψ j(α), α)

∂ψ2 , j = 1, 2,

(2.2)

where Ai(τ) =
1

2π

∞∫

−∞

cos(τt − t3/3)dt is the Airy function and Ai′(τ) is the derivative of the Airy func-

tion [9].
The nonuniform asymptotics can be obtained from Eq. (2.2), if the Airy function and its derivative are

replaced by their expansions at large values of the argument. In Fig. 4 the wave pattern of the ship (wedge-
shaped) waves calculated according to Eq. (2.2) is presented; these waves are described by the real part of
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the function ReJ3(r, α) for the source depth H = 0.5 m. The integral J2(r, α) associated with the lower part
of the dispersion curve k2(ψ) in Fig. 2 is studied in the same fashion. Figure 5 presents the wave pattern
described by the function ReJ2(r, α) calculated according a formula analogous to (2.2), for the same source
depth. In this case, the tangent of the wave (Kelvin) wedge semi-angle tanA = 0.836. In Fig. 6 the wave
pattern of the surface disturbances corresponding to the sum of the two terms Re(J2(r, α) + J1(r, α)) is
presented.

Summary. It is shown that the far fields of the surface disturbances produced by a localized pulsating
source in a flow of a heavy infinite-depth fluid represent the system of waves of two types, namely, the
annular and wedge- shaped (ship) waves. The unsteadiness of the disturbance source amplitude leads to the
appearance of annular waves diverging over the fluid surface directly from the source.

In this case, the contribution into the full surface disturbance is made by two wedge-shaped (ship) waves,
any of which is confined inside the corresponding Kelvin wedge. The asymptotic solutions derived make it
possible to describe the far fields of the surface disturbances produced by a localized unsteady source both
outside and inside the corresponding wave wedges. The asymptotics of the far fields of the wave distur-
bances obtained in the study allow one to effectively calculate the main characteristics of the wave fields
and, moreover, to qualitatively analyze the solutions obtained, which is important for correctly formulating
the mathematical models of the wave dynamics of surface disturbances in actual natural media.

The study was carried out with the support of the Russian Foundation for Basic Research (project
No. 14-01-00466).
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