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Abstract—The problem of far fields of internal gravity waves from a nonstationary source moving in a strati-
fied ocean of finite depth is considered. It is shown that the wave pattern of the generated far fields of internal
waves for certain generation parameters is a system of hybrid wave perturbations that simultaneously have the
properties of two wave types: annular (transverse) and wedge-shaped (longitudinal). The features of the phase
structure and wave fronts of the generated fields are studied. Uniform asymptotics of the solutions describing
far hybrid internal waves from a nonstationary source are constructed.
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INTRODUCTION

An important mechanism for the excitation of
fields of internal gravity waves in the ocean is their
generation by perturbation sources of different physi-
cal nature: natural (a moving typhoon, f low over the
ocean relief, and seamounts) and anthropogenic
(marine engineering structures, collapse of a turbulent
mixing zone, underwater explosions) [1, 6–12]. Fun-
damentally, the system of hydrodynamic equations
describing wave perturbations is quite a complex
mathematical problem, and the main results of solving
problems on internal wave generation are represented
in the most general integral form [1, 9, 11]. In this
case, for their study, the obtained integral solutions
require the development of asymptotic methods
allowing for quantitative analysis and express esti-
mates of the obtained solutions when measuring inter-
nal waves in the ocean. The existing approaches to
describing wave patterns in a linear approximation
represent the wave fields as Fourier integrals and
analyze their asymptotics by the stationary phase
method or by geometrical construction of the total
envelopes of wave fronts using the kinematic theory
of dispersive waves [5, 9–11]. Kinematic theory
make it possible, among other things, to represent
the phase surfaces of interval gravity wave fields ana-
lytically. The general problems involved in construct-
ing phase patterns of dispersive waves generated by
moving localized sources are described in [5]. The
aim of this work is to solve the mathematically more
complicated problem of constructing asymptotics
that describe the features of both the phase and
amplitude structures of far fields of internal gravity
waves excited by an oscillating perturbation source
moving in a stratified ocean of finite depth.

FORMULATION OF THE PROBLEM 
AND INTEGRAL FORMS OF SOLUTIONS
We consider the problem on far fields of internal

gravity waves generated during the movement of a
point source of perturbations with power Q in a strati-
fied layer of a medium with depth H. It is assumed that
the source’s power depends harmonically on time

. The source moves at velocity V in the
negative direction along the x axis, the z axis is directed
upward, and the depth of source occurrence is ; we
consider a steady regime of wave motions. The equa-
tion for the vertical prominence of isopycnals 
(lines of equal density with the same harmonic time
dependence) in a coordinate system moving simulta-
neously with the source has the following form in the
linear formulation and with respect to the Boussinesq
approximation [1, 2]:

(1.1)

where  is the Brunt–Väisälä fre-

quency, which further is assumed to be constant
(  is the unperturbed density of the medium) and

 is the Dirac delta function. On the one hand, ana-
lytical ocean stratification models (N(z) = const, lin-
ear or other model distribution of the Brunt–Väisälä
frequency) considerably facilitate mathematical solu-
tion of the problems; on the other, they raise questions
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Fig. 1. Left branch of dispersion curve.
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on the adequacy and physical validity of these model
representations. The used approximation of constancy
of the Brunt–Väisälä frequency is one of the most
popular in studying the dynamics of internal waves in
the ocean. For certain regions of the World Ocean (the
Arctic Basin), this approximation (N(z) = const and
rigid-lid) well describes the actual hydrology and is
among the basic ones in real oceanological and hydro-
physical calculations [1, 3, 4, 8].

The function  is associated with the vertical
component of the internal wave velocity  by

the relationship  [2].

The rigid-lid condition is used as the boundary condi-
tions:

(1.2)

In dimensionless coordinates, 

, , ,
, Eq. (1.1) and boundary conditions (1.2) are

rewritten as follows (the superscript “ ” is omitted
hereinafter):

(1.3)

where  is the maximum value of the group
velocity of the first mode of internal gravity waves in a
stratified layer of the medium with depth H [1, 2],

. The case of  was studied in [2], and it
was shown that far from the oscillating perturbation
source, the excited fields are a system of longitudinal
(wedge-shaped) waves that are confined within the
corresponding wave fronts. This work examines the
case of . The solution to problem (1.3) is sought
in the form of the Fourier integral

To determine the function , we have the fol-
lowing boundary-value problem (  and  are the hori-
zontal components of the wave vector : ):

(1.4)
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We represent the solution to problem (1.4) as the
sum of the vertical modes:

i.e., as a sequence by eigenfunctions of uniform
boundary-value problem (1.4). Hence, the solution to
problem (1.3) has the form

(1.5)

By equating the denominator to zero in , we
can obtain a dispersion relation that relates the hori-
zontal components  and  of the wave vector as

(1.6)

Then, we consider the case . Depending on
the oscillation frequency of the perturbation source,
the frequency interval  is divided by two typ-
ical frequencies  into three intervals: ,

, , which determine the form
of the dispersion curves, which consist of two
branches. Figure 1 shows the left branch of dispersion
curve (1.6), designated as  at  (dash–dot-
ted line),  (dashed line),  (solid
line) for the first mode  and M = 0.4. Figure 2
shows the right branch of the dispersion curve, denoted
as  for the same parameters and notation.

In the first interval, the dispersion curve represents
two open and one closed curve inside the dash-dotted
separatrix in Fig. 1. In the second and third intervals,
there are two open curves; in the second case, the left
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Fig. 2. Right branch of dispersion curve.
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branch of the dispersion curve has two local extrema
(solid line in Fig. 1), and in the third case, neither
branch of the dispersion curves has any extrema.

The annular (transverse) waves correspond to the
closed dispersion curves, and the wedge-shaped (lon-
gitudinal waves inside the Kelvin wedge), to the open
curves. Here, in the third frequency interval, the half-
angle of wave wedges is smaller than 90°, and in the
second frequency interval, one of the two wedges has а
half-angle greater than 90°. In the latter case, the gen-
erated waves have features of both annular (transverse)
and wedge-shaped (longitudinal) waves, which will be
referred to as hybrid.

We can determine the values of parameters  and
M characterizing the oscillation frequency and veloc-
ity of the perturbation source that generate annular
waves for the mode with arbitrary number n. For this, it
is expedient for  to find such a dependence 
for which Eq. (1.6) has three roots. This dependence is
determined by excluding variable  from the system of
equations:

Hence, we obtain . If ,
no annular waves exist at any values  for the nth
mode. If , for , there are no annu-

lar waves, and for , they exist. This implies
that, unlike the wedge-shaped waves, there are only a
finite number of modes for which annular waves exist
at any values of . To calculate this number, the con-
dition  should be fulfilled. Then,
n is the maximum possible number of modes for
which annular waves occur at the specified value of M.
The  values are estimated from the system of
equations

which is solved numerically. Figure 3 presents the
dependences  for the first mode. If the
oscillation frequency  of the perturbation source lies
below the curve of  for a certain fixed value of ,
the wave field is a system of transverse (annular) and
longitudinal (wedge-shaped) waves. If the value of 
lies above the curve of , the wave field is a sys-
tem of longitudinal (wedge-shaped) waves only. If the
value of  is found between the both curves, the
excited fields have the features of both longitudinal
(wedge-shaped) and transverse (annular) waves.
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Below, we consider hybrid internal waves (M = 0.4)
and the first mode ( , the subscript n is omitted).
In this case, , and all numeri-
cal calculations are presented for . Integra-
tion (1.5) using the variable  is performed by the
theory of residues. Upon integration with variable ,
the problem of passing around the poles on the real
axis is solved by the perturbation method. The exact
solution (with respect to the harmonic time depen-
dence) is written as

where α and β are the roots of the equation 
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Fig. 4. Lines of equal phase.
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ASYMTOTICS OF FAR WAVE FIELDS

-type integrals describing the ordinary ship-gener-
ated internal gravity waves propagating far from perturba-
tion sources with the dispersion dependence  were
studied in [1, 2]. Here, we consider the term  with the
dispersion dependence  (the superscript 1 is omit-
ted). We designate the phase  and,

using the condition of phase stationarity ,

obtain a family of lines of the constant phase (with

the parameter ) ,

. Since the asymptotics of the

far wave fields are fully determined by the behavior of
the stationary points of the phase function  that do
not depend on , this term is omitted hereinafter
without loss of generality in order to simplify the cal-
culations. To obtain the expression for the vertical
prominence of the isopycnals , which is har-
monically time-dependent, it suffices to multiply the
asymptotic formulas obtained below by  and
use the real part from the result. Figure 4 illustrates the
equal phase lines for different values of  (  is an
integer). The aggregate of cuspidal points forms a wave
front upstream of the f low (dashed line in Fig. 4). The
corresponding half-angle of the wave wedge is 113°.
The equation for the wave front is written as

, where  is the root of the equation

2J
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. The dashed line in Fig. 4 is the crest of the

wave with the phase , and the equation of this

line is written as , where is the root

of the equation , which can be solved in

explicit form: . As a result, we
obtain the equation for the wave crest with a zero
phase: , . The
annular and longitudinal crests to the left of the
dashed line in Fig. 4 have the phase , and the
longitudinal crests to the right have the phase .

At infinity, i.e., at , the equation for the
longitudinal wave crests has the form:

 (1 is an integer). Thus,
these are the crests of a plane wave with a length of

. The length of annular
waves in the direction of the  axis is

, i.e., greater by a factor of 4. The

integral  belongs to the class of integrals with two
stationary points; when the stationary points are far
from each other, the integral is determined by the sta-
tionary phase method. The stationary points merge at
the wave front, and the stationary phase method is
inapplicable in the vicinity of the front.

Following [1], we describe the procedure for con-
structing uniform asymptotics of the integral . We
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Fig. 5. Field of prominent internal gravity waves.
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introduce the notation 
and substitute the variable

(2.1)

The right-hand side of (2.1) contains the simplest
function with two merging (at ) stationary
points. We require that the point  correspond
to the stationary point , and the point , to
the point . It then follows from (2.1) that

After substitution of the variables (2.1), the inte-
gral  has the form

(2.2)

The integration limits in (2.2) are replaced with
infinite ones, and for large values , the replacement
error of the integration limits has an order of .
The slowly changing amplitude  can be replaced
with the linear function , and it can be
required that  for  and

 for . Then, 
, . The val-

ues of  in the expression for  can be calcu-

lated by twice differentiating (2.1) using the variable .
Hence, we obtain

Substituting  in (2.2), we obtain the expression
for uniform asymptotics  for large :

(2.3)

where  is the Airy func-

tion and  is the derivative Airy function [1].
Note that although the asymptotics of (2.3) is for-
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mally obtained for large , this formula also works

for .

Figure 5 shows the wave pattern at , calcu-
lated using (2.3) in dimensionless coordinates (in the
neighborhood of the origin, the integral  was
estimated numerically). Using the asymptotics of the
Airy function and its derivative far from the wave front,
we can obtain nonuniform asymptotics for 
consisting of two terms. The first term (corresponding
to the root ) describes wedge-shaped (longitudi-
nal) waves, and the second one (corresponding to the
root ), annular (transverse) waves.

CONCLUSIONS

It is shown that the far fields of internal gravity
waves from a nonstationary source moving in a strati-
fied ocean of finite depth are a hybrid system of two
wave types, annular (transverse) and wedge-shaped
(longitudinal), under certain regimes of generation.
The nonstationary amplitude of the perturbation
source not only generates annular waves that propa-
gate directly from the source, but also hybrid internal
waves that propagate upward along the f low from the
source. The quality pattern of the wave fields far from
the nonstationary source is considerably complicated
compared to the case of generation of internal waves
by a moving stationary source when wave fronts of sep-
arate modes, starting from the first one, arrive consec-
utively at a fixed point [1, 12]. First, the annular waves
may arrive first to a fixed observation point for certain
generation parameters, in which case the number of
incoming annular waves is always finite. Secondly, a
mode front that differs from the first mode and has the
largest half-angle of a Kelvin wedge may arrive at a

y
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= 10t

1( , )J x y

1( , )J x y
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fixed observation point, rather than the front of the
first, second, and subsequent modes. The derived
asymptotics make it possible to effectively calculate
the main amplitude–phase characteristics of the
excited far fields of gravity waves in nonstationary gen-
eration regimes and to qualitatively analyze the
obtained solutions, which is important for correctly
formulating mathematical models of real ocean wave
dynamics.
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